i1 : W = QQ[X, dX, Y, dY, Z, dZ, WeylAlgebra=>{X=>dX, Y=>dY, Z=>dZ}]
o1 = W
o1 : PolynomialRing
|
i3 : h = localCohom I
o3 = HashTable{0 => subquotient (| dZ dY dX |, | dX dY dZ |)
1 => subquotient (| -dY-dZ -Y+Z 0 0
| -ZdZ-1 -YZ -XdX-1 XdX-YdY
2 => cokernel | -XYZ XY-XZ 3XdX-2YdY-2ZdZ YdY+
------------------------------------------------------------------------
0 dXdY+dXdZ dXY-dXZ XdX+1 0 0 |, |
-3dXZdZ-3dX dXZdZ+dX dXYZ XdXZ+Z dXYdY+dXZdZ+2dX XdXdY+dY | |
ZdZ+3 Y2dY-2YdYZ-2YZdZ+Z2dZ |
------------------------------------------------------------------------
}
XY-XZ dY+dZ XdX+YdZ-ZdZ -YdZ+ZdZ+1 0 0 0 |)
XYZ 0 0 0 YdY-ZdZ XdX-ZdZ ZdZ+1 |
o3 : HashTable
|