The PDFAnim_temp package
Jochen Skupin (Version 0.52A, modified by John Bowman)

April 30, 2007

Abstract
A ETEX package to create animated PDFs with pdfIXTEX.

Contents
[I__Introductior




1 Introduction

PDFAnim_temp is an interim IKTEX package to create animated PDFs with
pdfEXTEX. It will become obsolete as soon as the 0.53 release of PDFanim is
made.

As it is very unusual to create animations with I#TgXand to have to deal with
JavaScript it might be that large parts of this document are not understandable for
the normal I¥TFXuser. Don’t be too frustrated about it and just try the examples.

Comments and bug reports are very welcome. You can contact me at:

jochen.skupin@uni-bremen.de

Don’t be too disappointed if it takes a while until you get an answer, as I have
little spare time to work on this package.

2 Usage

To include an animation in a PDF file you need:
e PDFETEX
e the PDFAnim package (i.e. the pdfanim_temp.sty-file)

e The frames of the animation as single PDF files with filenames in the form
filenamen.pdf where n is the number of the nth frame of the animation
starting with 0.

e Adobe Acrobat or AcroReader to view the animation

The package includes the single frames as hidden picture buttons in the PDF-
file. The animation itself is created using a visible picture button whose picture is
exchanged using the JavaScript language available in Adobe Acrobat and AcroRe-
ader. The frames of the animation have to be included in the document preamble
using

\PDFAnimLoad [options]{name}{filename}{number_of_frames}

where filename is the head of the filename of the PDF-files containing the sin-
gle frames of the animation omitting the running number and the .pdf exten-
sion. name is the name of the animation. With this name it can be accessed
in the document. number_of_frames gives the number of files to be included.
An animation with 10 frames would require number_of_frames = 10 and files
filenameO...9.pdf. The various options of \PDFAnimLoad will be discussed in
section Hl

To access the animation anywhere in the document use:

\PDFAnimation{name}
Examples can be found at:
e http://www.uni-bremen.de/~skupin/pdfanim/Demos

e http://www.tug.org/texshowcase/


mailto:jochen.skupin@uni-bremen.de
http://www.uni-bremen.de/~skupin/pdfanim/Demos
http://www.tug.org/texshowcase/

default

NoDocJS

NoPageJS

\PDFAnimJSPageEnable
\PDFAnimJSEnable
\PDFAnimJSPageDisable

\PDFAnimJSDisable

3 Package option(s)
The package has to be loaded in the document preamble with:
\usepackage [options]{pdfanim_temp}

The package options change the way the JavaScript code is included in the PDF-
file.

The default behaviour (by giving no options at all) is to include most of the
JavaScript on document level and access it via page open/close attributes or via
the on-click action of the picture button.

e The advantage is that only very short function calls have to be included in
the page open/close attributes because most JavaScript code is stored on
document level. Also it is possible to define global variables to store the
status of an animation (like the last displayed frame, is it running or not).

With this option no document level JavaScript is generated. All JavaScript is
stored in the picture button itself and the page open/close attributes.

e The disadvantage is that all JavaScript code is stored on every page again.
This leads to slightly bigger file sizes. Due to this all variables are newly
initialised on every page so it is not possible to have global variables to
remember the status of an animation from page to page.

I didn’t yet manage to derive on which page a distinct animation (especially floats)
is placed by TEX. The JavaScript code for all animations is therefore included in
every page. Not very elegant—I know. The problem is that when the document
contains auto starting animations all of them are started again on every page.
With the NoPageJS option the automatic inclusion of JavaScript code on any
page can be suppressed.

e The advantage is that not all auto start animations will run permanently.

e The disadvantage is that the user has to take care to put the JavaScript on
pages with animations by hand. To do this the following 4 commands are
provided:

enable JavaScript in page-attribute of current page
enable JavaScript in page-attribute on all following pages
disable JavaScript in page-attribute of current page

disable JavaScript in page-attribute on all following pages

4 PDFAnimLoad options

There are already much too many options. But during my usage of PDFAnim
I needed all of them for one or the other reason. Unfortunately not all options
work well together and some of the older ones might not work at all in the current
implementation anymore. Maybe some clean-up is needed here.



single
auto
debug

fallback

hidden
loop
noclick
remember
reverse

step

bcolor
bgcolor
defaultframe
depth
extension
height

interval

name

onclick

scale

scaletype

4.1 Boolean options

extract frames as the individual pages of a single input file
auto start animation
enable debug messages

include start-picture below PictureButton as fallback solution for xpdf, macs ...
(gives poor animation results)

create hidden PictureButton (mostly for internal use)

loop animation

don’t recognise clicks on PictureButton

remember last displayed picture when changing to another page
play animation in reversed order

advance animation on every mouse-click

4.2 Options that take parameters

bordercolor of PictureButton

backgroundcolor of PictureButton

select frame to display when animation not yet running
depth of PictureButton

set extension of included pictures (till now only pdf works)
height of PictureButton

set interval in ms between animation frames (only shows effect if interval is longer
than the time needed to display a frame)

name PictureButton (may be useful for further editing of the pdf, not needed/used
by PDFAnim)

JavaScript action to perform on mouse-click (mostly for internal use)
scaling of picture used in PictureButton:
A Always scale.
B Scale only when the icon is bigger than the annotation rectangle.
S Scale only when the icon is smaller than the annotation rectangle.
N Never scale.

type of scaling of picture used in PictureButton:



use

usecnt

startframe

width

A Anamorphic scaling: scale the icon to the annotation rectangle exactly, with-
out regard to its original aspect ratio (ratio of width to height).

P Proportional scaling: scale the icon to the width or height of the annotation
rectangle while maintaining the icon’s original aspect ratio. If the required
horizontal and vertical scaling factors are different, use the smaller of the two,
centering the icon within the annotation rectangle in the other dimension.

use pictures from other animation (to save memory)
use counter from other animation
select first frame to display

width of PictureButton

4.3 Navigation buttons

Another command, \PDFAnimButtons, which is available if you also load D. P.
Story’s package eforms. sty, presents an alternative method for starting and stop-
ing animations by pressing the Play/Pause button. It also provides a method for
jumping to arbitrary locations in long animations. I the animation is not running,
you can input a percentage; pressing Play/Pause then starts the animation from
that relative position (e.g. 75 means frame 150 for a 200-frame animation).

5 Open issues

Fewer options

During my usage of PDFAnim I used all of the options in section Bl But I guess
they can be reduced and combined in a better way. Any improvements are wel-
come.



	Introduction
	Usage
	Package option(s)
	PDFAnimLoad options
	Boolean options
	Options that take parameters
	Navigation buttons

	Open issues

