
1

Generated on Tue May 13 17:19:13 2014 for libpcidsk by Doxygen] Gener-
ated on Tue May 13 17:19:13 2014 for libpcidsk by Doxygen

2

libpcidsk

Contents

Chapter 1

PCIDSK SDK - Read/Write Library for
the PCI PCIDSK (.pix) File Format

The PCIDSK (p. ??) SDK is a C++ Library for reading and writing the PCIDSK (p. ??) (.pix) geospatial
file format used as the primary format of the Geomatica and related software from PCI Geomatics. The
library is available under an Open Source license, and it’s development is funded by PCI Geomatics.
The primary author of the library is Frank Warmerdam (warmerdam@pobox.com).

As of November 2009 the library is still under development, but preliminary versions are now available.

1.1 Developer Oriented Documentation

• PCIDSK Namespace

• Building the PCIDSK SDK on Windows and Unix

• PCIDSK API Tutorial

1.2 Download

The current development version of the software is available from the Subversion source repository at:

http://svn.osgeo.org/gdal/sandbox/warmerdam/pcidsk

Packaged source distributions should be available in the downloads area.

2 PCIDSK SDK - Read/Write Library for the PCI PCIDSK (.pix) File Format

Chapter 2

Building the PCIDSK SDK

4 Building the PCIDSK SDK

As of November 2009 the PCIDSK (p. ??) SDK uses a relatively simplistic set of makefiles for building
on linux/unix/macos systems and on windows systems.

2.1 Building on Windows with Microsoft Visual Studio

On Windows system, building is accomplished using Microsoft Visual Studio, but via the commandline
tools (NMAKE and CL). For command line builds you will normally have to have run the VCVAR32.BAT
script that comes with the compiler. For Visual Studio 2003 this might be found at:

C:\Program Files\Microsoft Visual Studio .Net 2003\VC7\bin\VCVARS32.BAT

Some Visual Studios also provide a "Visual Studio Command Prompt" to be found in the start menu, which
gives you a shell with the correct environment. If you plan to compile for the 64bit platform be sure to
choose the correct bat / command prompt.

Once the environment is setup, you can cd to the PCIDSK (p. ??) "src" subdirectory and do the following:

C:\PCIDSK\SRC> nmake /f makefile.vc

Before building as above, you may find you need to modify some commandline switches in the Makefile.vc.
Generally the switches requiring adjustment are in the OPTFLAGS and CXXFLAGS macros:

OPTFLAGS = /Ox
CXXFLAGS = /nologo /MD /GR /EHsc $(OPTFLAGS) /W3 /I. \
/D_CRT_SECURE_NO_DEPRECATE /DLIBPCIDSK_EXPORTS /D_CRT_NONSTDC_NO_DEPRECATE

Adjust as required to match the needs of your application and visual studio version. The SDK should build
with any version of Microsoft Visual Studio 2002 or later.

The result of a build should be a pcidsk.lib file in the pcidsk directory.

2.2 Building on Linux, Unix and MacOS X

On unix and unix-like operating systems it should be possible to build using the Makefile in the top level
PCIDSK (p. ??) directory. Currently the SDK does not provide a configure or similar environment. Instead
the src/Makefile, and tests/Makefile can be edited to adjust the compiler switches. Key switches are in the
CXXFLAGS macro. Also, in src/Makefile you can comment out, or adjust the JPEG_FLAGS switch to
control whether libjpeg is used for JPEG compression support.

JPEG_FLAGS = -DHAVE_LIBJPEG
CXXFLAGS = -O -Wall -fPIC -I. $(JPEG_FLAGS)

Then "make" in the main pcidsk directory should build the SDK as well as the test programs. The "make
check" command may be used to run the test suite once the test suite data is available.

By default the files src/pcidsk.a (a static library) and src/pcidsk.so (a shared library) are built.

Chapter 3

PCIDSK API Tutorial

6 PCIDSK API Tutorial

The PCIDSK (p. ??) file format is a geospatial file format which includes raster channels (or bands) and
auxilary segments which include information like georeferencing, color lookup tables, vector feature data
and many other special data types.

The PCIDSK (p. ??) SDK provides C++ classes to interface to the various different components of the
file format. The PCIDSKFile is used to interface with the file as a whole. The PCIDSKChannel is used
to interface with a raster channel (or band). The PCIDSKSegment is the generic interface to auxilary
segments. There are additional interface classes available for some of the specific segment types.

3.1 Include files, and Namespaces

The PCIDSK (p. ??) classes and interfaces are defined in a variety of include files, but generally it is
sufficient to include just the main include file, pcidsk.h (p. ??).

#include <pcidsk.h>

All PCIDSK (p. ??) classes are part of the C++ PCIDSK (p. ??) namespace. It is often convenient to use
this namespace explicitly making all classes and methods directly available. This can be accomplished by
putting the follow declaration after the include of pcidsk.h (p. ??).

using namespace PCIDSK;

However, for the balance of this tutorial we will explicitly include the namespace when accessing classes
to make it clearer which definitions are coming from the SDK.

3.2 Opening the File

We start with a fairly trivial program using the SDK. In this program we open the desired file (irvine.pix),
and print out general information on the number of pixels, lines and channels.

#include "gdal_priv.h"

int main()
{

PCIDSK::PCIDSKFile *file = PCIDSK::Open("irvine.pix", "r", NULL);

printf("File: %dC x %dR x %dC (%s)\n",
file->GetWidth(), file->GetHeight(), file->GetChannels(),
file->GetInterleaving().c_str());

delete file;
}

Note the use of the PCIDSK (p. ??):: prefix for classes (like PCIDSKFile) and functions (like Open()
(p. ??)) coming from the PCIDSK (p. ??) namespace. The PCIDSK::Open (p. ??) function is used to
open the file, and various methods on the object are used to get the number of pixels, lines and channels as
well as the interleaving.

The PCIDSK (p. ??) SDK API takes and returns strings using the std::string class, so to
get a C printable string out we use the c_str() method on the returned string from the
PCIDSK::PCIDSKFile::GetInterleaving() (p. ??) method.

3.3 Reading Image Data 7

3.3 Reading Image Data

The PCIDSK::PCIDSKChannel (p. ??) class is used to interface with raster image channels. Normally
raster access is accomplished one band at a time as demonstrated in this snippit derived from tests/pcidsk_-
read.cpp.

for(int channel = 1; channel <= file->GetChannels(); channel++)
{

PCIDSK::PCIDSKChannel *channel = file->GetChannel(channel);
printf("Channel %d of type %s.\n",

channel,
PCIDSK::DataTypeName(channel->GetType()).c_str());;

int i_block;
int x_block_count =

(channel->GetWidth() + channel->GetBlockWidth()-1)
/ channel->GetBlockWidth();

int y_block_count =
(channel->GetHeight() + channel->GetBlockHeight()-1)
/ channel->GetBlockHeight();

int block_size = PCIDSK::DataTypeSize(channel->GetType()) *
channel->GetBlockWidth() *
channel->GetBlockHeight();

void *block_buffer = malloc(block_size);

int block_count = x_block_count * y_block_count;

for(i_block = 0; i_block < block_count; i_block++)
{

channel->ReadBlock(i_block, block_buffer);
/* ... do something with the imagery ... */

}
free(block_buffer);

}

Note that there is no effort to destroy the PCIDSKChannel object when no longer needed. Component
objects like channels and segments are owned by the PCIDSK::PCIDSKFile (p. ??) and should not be
destroyed directly. The accessors like GetChannel() return a pointer that remains owned by the file.

In this case we loop through all the channels, report the channel number and type, and then loop through
all the blocks in the channel reading them. For simplicity we don’t actually do anything with them here.

The PCIDSK::PCIDSKChannel::ReadBlock() (p. ??) method is used to read imagery. It reads ex-
actly one block on the "natural block boundary" and it is read in the original data type of the chan-
nel (8U, 16U, 16S or 32R). The blocking depends on the organization of the data on disk. For
pixel interleaved or band interleaved files this is one scanline while for tiled files this is one tile.
The block size is established with the PCIDSK::PCIDSKChannel::GetBlockWidth() (p. ??) and
PCIDSK::PCIDSKChannel::GetBlockHeight() (p. ??) methods on the channel. The data type is de-
termined with the PCIDSK::PCIDSKChannel::GetType() (p. ??) method.

The ReadBlock() method also has optional parameter to read a subwindow, but the PCIDSK (p. ??) SDK
does ∗not∗ provide a generic high level "read an arbitrary window of the image" method such as is provided
by libraries like GDAL or PCI’s own GeoGateway/GDB. This is in keeping with the PCIDSK (p. ??)
SDK policy of providing low level "file organization oriented" data access with a minimum of convenience
services. It is intended that higher level libraries would provide caching, windowing and other convenience
services.

8 PCIDSK API Tutorial

Chapter 4

Namespace Index

4.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

PCIDSK (Namespace for all PCIDSK (p. ??) Library classes and functions) ??

10 Namespace Index

Chapter 5

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

PCIDSK::IOInterfaces (IO Interface class) . ??
PCIDSK::Mutex (Mutex (p. ??) interface class) . ??
PCIDSK::PCIDSK_PCT (Interface to PCIDSK (p. ??) pseudo-color segment) ??
PCIDSK::PCIDSKChannel (Interface to one PCIDSK (p. ??) channel (band)) ??
PCIDSK::PCIDSKException (Generic SDK Exception) . ??
PCIDSK::PCIDSKFile (Top interface to PCIDSK (p. ??) (.pix) files) ??
PCIDSK::PCIDSKGeoref (Interface to PCIDSK (p. ??) georeferencing segment) ??
PCIDSK::PCIDSKInterfaces (Collection of PCIDSK (p. ??) hookable interfaces) ??
PCIDSK::PCIDSKSegment (Public tnterface for the PCIDSK (p. ??) Segment Type) ??
PCIDSK::PCIDSKVectorSegment (Interface to PCIDSK (p. ??) vector segment) ??
PCIDSK::ShapeField (Attribute field value) . ??
PCIDSK::ShapeIterator (Iterator over shapeids in a vector segment) ??
PCIDSK::ShapeVertex (Structure for an x,y,z point) . ??

12 Class Index

Chapter 6

File Index

6.1 File List

Here is a list of all documented files with brief descriptions:

pcidsk.h . ??
pcidsk_buffer.h . ??
pcidsk_channel.h . ??
pcidsk_exception.h . ??
pcidsk_file.h . ??
pcidsk_georef.h . ??
pcidsk_interfaces.h . ??
pcidsk_io.h . ??
pcidsk_mutex.h . ??
pcidsk_pct.h . ??
pcidsk_rpc.h . ??
pcidsk_segment.h . ??
pcidsk_shape.h . ??
pcidsk_types.h . ??
pcidsk_vectorsegment.h . ??

14 File Index

Chapter 7

Namespace Documentation

7.1 PCIDSK Namespace Reference

Namespace for all PCIDSK (p. ??) Library classes and functions.

Classes

• class PCIDSKChannel
Interface to one PCIDSK (p. ??) channel (band).

• class PCIDSKException
Generic SDK Exception.

• class PCIDSKFile
Top interface to PCIDSK (p. ??) (.pix) files.

• class PCIDSKGeoref
Interface to PCIDSK (p. ??) georeferencing segment.

• class PCIDSKInterfaces
Collection of PCIDSK (p. ??) hookable interfaces.

• class IOInterfaces
IO Interface class.

• class Mutex
Mutex (p. ??) interface class.

• class PCIDSK_PCT
Interface to PCIDSK (p. ??) pseudo-color segment.

• class PCIDSKSegment
Public tnterface for the PCIDSK (p. ??) Segment Type.

• struct ShapeVertex

16 Namespace Documentation

Structure for an x,y,z point.

• class ShapeField
Attribute field value.

• class PCIDSKVectorSegment
Interface to PCIDSK (p. ??) vector segment.

• class ShapeIterator
Iterator over shapeids in a vector segment.

Typedefs

• typedef int32 ShapeId
Type used for shape identifier, use constant NullShapeId as a NULL value.

Enumerations

• enum UnitCode { UNIT_US_FOOT = 1, UNIT_METER = 2, UNIT_DEGREE = 4, UNIT_-
INTL_FOOT = 5 }

• enum ShapeFieldType {

FieldTypeNone = 0, FieldTypeFloat = 1, FieldTypeDouble = 2, FieldTypeString = 3,

FieldTypeInteger = 4, FieldTypeCountedInt = 5 }
Attribute field types.

• enum eChanType {

CHN_8U = 0, CHN_16S = 1, CHN_16U = 2, CHN_32R = 3,

CHN_UNKNOWN = 99 }
Channel pixel data types.

• enum eSegType {

SEG_UNKNOWN = -1, SEG_BIT = 101, SEG_VEC = 116, SEG_SIG = 121,

SEG_TEX = 140, SEG_GEO = 150, SEG_ORB = 160, SEG_LUT = 170,

SEG_PCT = 171, SEG_BLUT = 172, SEG_BPCT = 173, SEG_BIN = 180,

SEG_ARR = 181, SEG_SYS = 182, SEG_GCPOLD = 214, SEG_GCP2 = 215 }
Segment types.

Functions

• PCIDSKFile ∗Open (std::string filename, std::string access, const PCIDSKInterfaces ∗interfaces)
• PCIDSKFile ∗ Create (std::string filename, int pixels, int lines, int channel_count, eChanType
∗channel_types, std::string options, const PCIDSKInterfaces ∗interfaces)

• void ThrowPCIDSKException (const char ∗fmt,...)
throw a formatted exception.

7.1 PCIDSK Namespace Reference 17

• const IOInterfaces ∗ GetDefaultIOInterfaces ()
• Mutex ∗ DefaultCreateMutex (void)
• std::string ShapeFieldTypeName (ShapeFieldType type)

Translate field type into a textual description.

• int DataTypeSize (eChanType)
• std::string DataTypeName (eChanType)
• std::string SegmentTypeName (eSegType)

7.1.1 Detailed Description

Namespace for all PCIDSK (p. ??) Library classes and functions.

7.1.2 Enumeration Type Documentation

7.1.2.1 enum PCIDSK::eChanType

Channel pixel data types.

Enumerator:

CHN_8U 8 bit unsigned byte

CHN_16S 16 bit signed integer

CHN_16U 16 bit unsigned integer

CHN_32R 32 bit ieee floating point

CHN_UNKNOWN unknown channel type

7.1.3 Function Documentation

7.1.3.1 PCIDSKFile ∗ PCIDSK::Create (std::string filename, int pixels, int lines, int
channel_count, eChanType ∗ channel_types, std::string options, const PCIDSKInterfaces
∗ interfaces)

Create a PCIDSK (p. ??) (.pix) file.

Parameters:

filename the name of the PCIDSK (p. ??) file to create.

pixels the width of the new file in pixels.

lines the height of the new file in scanlines.

channel_count the number of channels to create.

channel_types an array of types for all the channels, or NULL for all CHN_8U channels.

option creation options (interleaving, etc)

interfaces Either NULL to use default interfaces, or a pointer to a populated interfaces object.

Returns:

a pointer to a file object for accessing the PCIDSK (p. ??) file.

18 Namespace Documentation

References CHN_16S, CHN_16U, CHN_32R, CHN_8U, PCIDSK::PCIDSKFile::CreateSegment(),
PCIDSK::PCIDSKFile::GetSegment(), PCIDSK::PCIDSKInterfaces::io, Open(), ThrowPCIDSKExcep-
tion(), and PCIDSK::PCIDSKGeoref::WriteSimple().

7.1.3.2 std::string PCIDSK::DataTypeName (eChanType chan_type)

Return name for the data type.

The returned values are suitable for display to people, and matches the portion of the name after the under-
score (ie. "8U" for CHN_8U.

Parameters:

chan_type the channel type enumeration value to be translated.

Returns:

a string representing the data type.

References CHN_16S, CHN_16U, CHN_32R, and CHN_8U.

7.1.3.3 int PCIDSK::DataTypeSize (eChanType chan_type)

Return size of data type.

Parameters:

chan_type the channel type enumeration value.

Returns:

the size of the passed data type in bytes, or zero for unknown values.

References CHN_16S, CHN_16U, CHN_32R, and CHN_8U.

7.1.3.4 PCIDSKFile ∗ PCIDSK::Open (std::string filename, std::string access, const
PCIDSKInterfaces ∗ interfaces)

Open a PCIDSK (p. ??) (.pix) file.

This function attempts to open the named file, with the indicated access and the provided set of system
interface methods.

Parameters:

filename the name of the PCIDSK (p. ??) file to access.
access either "r" for read-only, or "r+" for read-write access.
interfaces Either NULL to use default interfaces, or a pointer to a populated interfaces object.

Returns:

a pointer to a file object for accessing the PCIDSK (p. ??) file.

References PCIDSK::PCIDSKInterfaces::CreateMutex, PCIDSK::PCIDSKInterfaces::io, and ThrowP-
CIDSKException().

Referenced by Create().

7.1 PCIDSK Namespace Reference 19

7.1.3.5 std::string PCIDSK::SegmentTypeName (eSegType type)

Return name for segment type.

Returns a short name for the segment type code passed in. This is normally the portion of the enumeration
name that comes after the underscore - ie. "BIT" for SEG_BIT.

Parameters:

type the segment type code.

Returns:

the string for the segment type.

7.1.3.6 std::string PCIDSK::ShapeFieldTypeName (ShapeFieldType type) [inline]

Translate field type into a textual description.

Parameters:

type the type enumeration value to translate.

Returns:

name for field type.

7.1.3.7 void PCIDSK::ThrowPCIDSKException (const char ∗ fmt, ...)

throw a formatted exception. This function throws a PCIDSK (p. ??) Exception by reference after format-
ting the message using the given printf style format and arguments. This function exists primarily so that
throwing an exception can be done in one line of code, instead of declaring an exception and then throwing
it.

Parameters:

fmt the printf style format (eg. "Illegal value:%d")

... additional arguments as required by the format string.

References PCIDSK::PCIDSKException::vPrintf().

Referenced by Create(), and Open().

20 Namespace Documentation

Chapter 8

Class Documentation

8.1 PCIDSK::IOInterfaces Class Reference

IO Interface class.

#include <pcidsk_io.h>

Public Member Functions

• virtual void ∗ Open (std::string filename, std::string access) const =0
• virtual uint64 Seek (void ∗io_handle, uint64 offset, int whence) const =0
• virtual uint64 Tell (void ∗io_handle) const =0
• virtual uint64 Read (void ∗buffer, uint64 size, uint64 nmemb, void ∗io_handle) const =0
• virtual uint64 Write (const void ∗buffer, uint64 size, uint64 nmemb, void ∗io_handle) const =0
• virtual int Eof (void ∗io_handle) const =0
• virtual int Flush (void ∗io_handle) const =0
• virtual int Close (void ∗io_handle) const =0

8.1.1 Detailed Description

IO Interface class.

The documentation for this class was generated from the following file:

• pcidsk_io.h

22 Class Documentation

8.2 PCIDSK::Mutex Class Reference

Mutex (p. ??) interface class.

Public Member Functions

• virtual int Acquire ()=0
Acquire the mutex.

• virtual int Release ()=0
Release the mutex.

8.2.1 Detailed Description

Mutex (p. ??) interface class. The Mutex (p. ??) class is the standard interface for mutexes in the
PCIDSK (p. ??) library. A mutex provides critical section locking in multi-threaded applications. Applica-
tions may provide custom mutex implementations by passing their own CreateMutex() implementation in
PCIDSK::PCIDSKInterfaces (p. ??) instead of the default one provided by the library (CreateDefaultMu-
tex()). The library will create mutexes using the PCIDSK::PCIDSKInterfaces::CreateMutex() (p. ??)
function.

Note that mutexes are created in the unlocked condition.

Mutexes may be destroyed with delete when no longer required.

8.2.2 Member Function Documentation

8.2.2.1 int PCIDSK::Mutex::Acquire () [pure virtual]

Acquire the mutex. Note that control will block in Acquire() (p. ??) until such time as the mutex can be
acquired for this thread.

Returns:

TRUE on success.

8.2.2.2 int PCIDSK::Mutex::Release () [pure virtual]

Release the mutex. Release this mutex so that it may be acquired by another thread.

Returns:

TRUE on success.

The documentation for this class was generated from the following files:

• pcidsk_mutex.h
• pcidskmutex.dox

8.3 PCIDSK::PCIDSK_PCT Class Reference 23

8.3 PCIDSK::PCIDSK_PCT Class Reference

Interface to PCIDSK (p. ??) pseudo-color segment.

#include <pcidsk_pct.h>

Public Member Functions

• virtual void ReadPCT (unsigned char pct[768])=0
Read a PCT Segment (SEG_PCT).

• virtual void WritePCT (unsigned char pct[768])=0
Write a PCT Segment.

8.3.1 Detailed Description

Interface to PCIDSK (p. ??) pseudo-color segment.

8.3.2 Member Function Documentation

8.3.2.1 virtual void PCIDSK::PCIDSK_PCT::ReadPCT (unsigned char pct[768]) [pure
virtual]

Read a PCT Segment (SEG_PCT).

Parameters:

pct Pseudo-Color Table buffer (768 entries) into which the pseudo-color table is read. It consists of
the red gun output values (pct[0-255]), followed by the green gun output values (pct[256-511])
and ends with the blue gun output values (pct[512-767]).

8.3.2.2 virtual void PCIDSK::PCIDSK_PCT::WritePCT (unsigned char pct[768]) [pure
virtual]

Write a PCT Segment.

Parameters:

pct Pseudo-Color Table buffer (768 entries) from which the pseudo-color table is written. It consists
of the red gun output values (pct[0-255]), followed by the green gun output values (pct[256-511])
and ends with the blue gun output values (pct[512-767]).

The documentation for this class was generated from the following file:

• pcidsk_pct.h

24 Class Documentation

8.4 PCIDSK::PCIDSKChannel Class Reference

Interface to one PCIDSK (p. ??) channel (band).

#include <pcidsk_channel.h>

Public Member Functions

• virtual int GetBlockWidth ()=0
Fetch image block width.

• virtual int GetBlockHeight ()=0
Fetch image block height.

• virtual int GetBlockCount ()=0
Fetch image block count.

• virtual int GetWidth ()=0
Fetch image width.

• virtual int GetHeight ()=0
Fetch image height.

• virtual eChanType GetType ()=0
Fetch pixel data type.

• virtual int ReadBlock (int block_index, void ∗buffer, int win_xoff=-1, int win_yoff=-1, int win_-
xsize=-1, int win_ysize=-1)=0

read block of image data from disk.

• virtual int WriteBlock (int block_index, void ∗buffer)=0
write block of image data from disk.

• virtual int GetOverviewCount ()=0
Fetch number of overviews.

• virtual PCIDSKChannel ∗ GetOverview (int i)=0
Fetch Overview.

• virtual std::string GetMetadataValue (std::string key)=0
Fetch metadata value.

• virtual void SetMetadataValue (std::string key, std::string value)=0
Set metadata value.

• virtual std::vector< std::string > GetMetadataKeys ()=0
Fetch metadata keys.

• virtual void Synchronize ()=0
Write pending information to disk.

8.4 PCIDSK::PCIDSKChannel Class Reference 25

8.4.1 Detailed Description

Interface to one PCIDSK (p. ??) channel (band).

8.4.2 Member Function Documentation

8.4.2.1 int PCIDSK::PCIDSKChannel::GetBlockCount () [pure virtual]

Fetch image block count.

Returns:

returns the number of blocks in a channel.

8.4.2.2 int PCIDSK::PCIDSKChannel::GetBlockHeight () [pure virtual]

Fetch image block height. Channel (band) access is done in blocks according to the natural blocking of the
data. For PIXEL, BAND and some FILE interleaved files a block is one scanline. For tiled files it is a tile.

Returns:

returns the height of a block in pixels.

8.4.2.3 int PCIDSK::PCIDSKChannel::GetBlockWidth () [pure virtual]

Fetch image block width. Channel (band) access is done in blocks according to the natural blocking of the
data. For PIXEL, BAND and some FILE interleaved files a block is one scanline. For tiled files it is a tile.

Returns:

returns the width of a block in pixels.

8.4.2.4 int PCIDSK::PCIDSKChannel::GetHeight () [pure virtual]

Fetch image height.

Returns:

returns the channel height in pixels.

8.4.2.5 std::vector< std::string > PCIDSK::PCIDSKChannel::GetMetadataKeys () [pure
virtual]

Fetch metadata keys. Returns a vector of metadata keys that occur on this object. The values associated
with each may be fetched with GetMetadataValue() (p. ??).

Returns:

list of keys

See also:

GetMetadataValue() (p. ??)

26 Class Documentation

8.4.2.6 std::string PCIDSK::PCIDSKChannel::GetMetadataValue (std::string key) [pure
virtual]

Fetch metadata value. Note that the returned pointer is to an internal structure and it may become invalid if
another thread modifies the metadata for this object.

Parameters:

key the key to fetch the value for.

Returns:

the value of the indicated metadata item, or an empty string if it does not exist on the target object.

See also:

GetMetadataKeys() (p. ??)

8.4.2.7 PCIDSK::PCIDSKChannel ∗ PCIDSK::PCIDSKChannel::GetOverview (int i) [pure
virtual]

Fetch Overview. This method fetches a pointer to the requested overview. The return PCIDSKChannel
(p. ??) object remains owned by the parent PCIDSKChannel (p. ??) but may be otherwise accessed using
the normal PCIDSKChannel (p. ??) mechanisms. The size of the overview in pixels and lines will reveal
it’s decimation factor relative to the base image.

Parameters:

i the zero based index of the overview to fetch (from zero to GetOverviewCount() (p. ??)-1)

Returns:

the overview channel object.

8.4.2.8 int PCIDSK::PCIDSKChannel::GetOverviewCount () [pure virtual]

Fetch number of overviews.

Returns:

the number of overviews available for this channel.

See also:

GetOverview() (p. ??)

8.4.2.9 eChanType PCIDSK::PCIDSKChannel::GetType () [pure virtual]

Fetch pixel data type.

Returns:

the pixel data type for this channel.

8.4 PCIDSK::PCIDSKChannel Class Reference 27

8.4.2.10 int PCIDSK::PCIDSKChannel::GetWidth () [pure virtual]

Fetch image width.

Returns:

returns the channel width in pixels.

8.4.2.11 int PCIDSK::PCIDSKChannel::ReadBlock (int block_index, void ∗ buffer, int win_xoff =
-1, int win_yoff = -1, int win_xsize = -1, int win_ysize = -1) [pure virtual]

read block of image data from disk. The buffer into which imagery is read should be preallocated large
enough to hold GetBlockWidth() (p. ??) ∗ GetBlockHeight() (p. ??) ∗ DataTypeSize(GetType() (p. ??))
bytes, or win_xsize∗win_ysize∗DataType(GetType() (p. ??)) if subwindowing is being used. Image data
is returned in the pixel data type reported by GetType() (p. ??) and in the local systems byte order (for
types larger than one byte).

For scanline oriented images the block index is the scanline index. For tiled images the block_index starts
at 0 at the top left tile. The tile to the right of that is 1, and the first tile in the second row is equal to
"blocks_per_row".

Partial (incomplete) blocks at the right or bottom of images that are not a multiple of the block width or
height in size will be zero filled out to the block size.

The win_xoff, win_yoff, win_xsize, and win_ysize parameters may be used to select a subwindow of the
desired block. By default the whole block is returned.

Parameters:

block_index zero based block index to read.

buffer the buffer into which the block will be read.

win_xoff the x (right) offset into the block to start reading.

win_yoff the y (down) offset into the block to start reading.

win_xsize the width of the window to read from the block.

win_ysize the height of the window to read from the block.

8.4.2.12 void PCIDSK::PCIDSKChannel::SetMetadataValue (std::string key, std::string value)
[pure virtual]

Set metadata value. Assign the metadata value associated with the passed key on this object. The file needs
to be open for update. Note that keys should be well formed tokens (no special characters, spaces, etc).

Parameters:

key the key to fetch the value for.

value the value to assign to the key. An empty string deletes the item.

See also:

GetMetadataValue() (p. ??)

28 Class Documentation

8.4.2.13 void PCIDSK::PCIDSKChannel::Synchronize () [pure virtual]

Write pending information to disk. Some write and update operations on PCIDSK (p. ??) files are not
written to disk immediately after write calls. This method will ensure that any pending writes are flushed
through to disk.

NOTE: Currently this method does not invalidate read-cached information. At some point in the future it
might be extended to do this as well.

8.4.2.14 int PCIDSK::PCIDSKChannel::WriteBlock (int block_index, void ∗ buffer) [pure
virtual]

write block of image data from disk. The buffer from which imagery is read should be preallocated large
enough to hold GetBlockWidth() (p. ??) ∗ GetBlockHeight() (p. ??) ∗ DataTypeSize(GetType() (p. ??))
bytes. Image data is expected in the pixel data type reported by GetType() (p. ??) and in the local systems
byte order (for types larger than one byte).

For scanline oriented images the block index is the scanline index. For tiled images the block_index starts
at 0 at the top left tile. The tile to the right of that is 1, and the first tile in the second row is equal to
"blocks_per_row".

Partial (incomplete) blocks at the right or bottom of images that are not a multiple of the block width or
height in size may be zero filled out to the block size.

Parameters:

block_index zero based block index to read.

buffer the buffer from which the block will be written.

The documentation for this class was generated from the following files:

• pcidsk_channel.h
• pcidskchannel.dox

8.5 PCIDSK::PCIDSKException Class Reference 29

8.5 PCIDSK::PCIDSKException Class Reference

Generic SDK Exception.

Public Member Functions

• PCIDSKException (const char ∗fmt,...)
• virtual ∼PCIDSKException () throw ()
• void vPrintf (const char ∗fmt, va_list list)
• virtual const char ∗ what () const throw ()

fetch exception message.

8.5.1 Detailed Description

Generic SDK Exception. The PCIDSKException (p. ??) class is used for all errors thrown by the PCIDSK
(p. ??) library. It includes a formatted message and is derived from std::exception. The PCIDSK (p. ??)
library throws all exceptions as pointers, and library exceptions should be caught like this:

try
{

PCIDSKFile *file = PCIDSK::Open("irvine.pix, "r", NULL);
}
catch(PCIDSK::PCIDSKException &ex)
{

fprintf(stderr, "PCIDSKException:\n%s\n", ex.what());
exit(1);

}

8.5.2 Constructor & Destructor Documentation

8.5.2.1 PCIDSKException::PCIDSKException (const char ∗ fmt, ...)

Create exception with formatted message.

This constructor supports formatting of an exception message using printf style format and additional
arguments.

Parameters:

fmt the printf style format (eg. "Illegal value:%d")

... additional arguments as required by the format string.

References vPrintf().

8.5.2.2 PCIDSKException::∼PCIDSKException () throw () [virtual]

Destructor.

30 Class Documentation

8.5.3 Member Function Documentation

8.5.3.1 void PCIDSKException::vPrintf (const char ∗ fmt, va_list args)

Format a message.

Assigns a message to an exception using printf style formatting and va_list arguments (similar to vfprintf().

Parameters:

fmt printf style format string.

args additional arguments as required.

Referenced by PCIDSKException(), and PCIDSK::ThrowPCIDSKException().

8.5.3.2 const char ∗ PCIDSKException::what () const throw () [inline, virtual]

fetch exception message.

Returns:

a pointer to the internal message associated with the exception.

The documentation for this class was generated from the following files:

• pcidsk_exception.h
• core/pcidskexception.cpp

8.6 PCIDSK::PCIDSKFile Class Reference 31

8.6 PCIDSK::PCIDSKFile Class Reference

Top interface to PCIDSK (p. ??) (.pix) files.

#include <pcidsk_file.h>

Public Member Functions

• virtual PCIDSKInterfaces ∗ GetInterfaces ()=0
Fetch hookable interfaces in use with this file.

• virtual PCIDSKChannel ∗ GetChannel (int band)=0
Fetch channel interface object.

• virtual PCIDSKSegment ∗ GetSegment (int segment)=0
Fetch segment interface object.

• virtual std::vector< PCIDSKSegment ∗ > GetSegments ()=0
• virtual PCIDSK::PCIDSKSegment ∗GetSegment (int type, std::string name, int previous=0)=0

Fetch segment interface object.

• virtual int GetWidth () const =0
Fetch image width.

• virtual int GetHeight () const =0
Fetch image height.

• virtual int GetChannels () const =0
Fetch channel (band) count.

• virtual std::string GetInterleaving () const =0
Fetch file interleaving method.

• virtual bool GetUpdatable () const =0
Check readonly/update status.

• virtual uint64 GetFileSize () const =0
Fetch file size.

• virtual int CreateSegment (std::string name, std::string description, eSegType seg_type, int data_-
blocks)=0

create a new auxiliary segment

• virtual void DeleteSegment (int segment)=0
delete an existing segment

• virtual void CreateOverviews (int chan_count, int ∗chan_list, int factor, std::string resampling)=0
Create an overview level.

• virtual int GetPixelGroupSize () const =0

32 Class Documentation

fetch number of bytes per pixel

• virtual void ∗ ReadAndLockBlock (int block_index, int xoff=-1, int xsize=-1)=0
Read a block.

• virtual void UnlockBlock (bool mark_dirty=false)=0
Unlock block.

• virtual void WriteToFile (const void ∗buffer, uint64 offset, uint64 size)=0
Write data to file.

• virtual void ReadFromFile (void ∗buffer, uint64 offset, uint64 size)=0
Read data from file.

• virtual void GetIODetails (void ∗∗∗io_handle_pp, Mutex ∗∗∗io_mutex_pp, std::string file-
name="")=0

• virtual std::string GetMetadataValue (const std::string &key)=0
• virtual void SetMetadataValue (const std::string &key, const std::string &value)=0
• virtual std::vector< std::string > GetMetadataKeys ()=0

Fetch metadata keys.

• virtual void Synchronize ()=0
Write pending information to disk.

8.6.1 Detailed Description

Top interface to PCIDSK (p. ??) (.pix) files.

8.6.2 Member Function Documentation

8.6.2.1 void PCIDSK::PCIDSKFile::CreateOverviews (int chan_count, int ∗ chan_list, int factor,
std::string resampling) [pure virtual]

Create an overview level. An overview is created on the indicated list of channels. If chan_count is zero,
then it will be created for all channels on the file. The overview will have a size determined by dividing the
base image level by "factor". The file needs to be open in update mode.

If the requested overview level already exists an exception will be thrown.

While this function creates the overview level, and records the resampling method in metadata, it does not
actually compute and assign imagery to the overview. This must be done externally by the application.
Overview computation is not a function of the PCIDSK (p. ??) SDK.

Parameters:

chan_count the number of channels listed in chan_list.

chan_list the channels for which the overview level should be created.

factor the overview decimation factor.

resampling the resampling to be used for this overview - one of "NEAREST", "AVERAGE" or
"MODE".

8.6 PCIDSK::PCIDSKFile Class Reference 33

8.6.2.2 int PCIDSK::PCIDSKFile::CreateSegment (std::string name, std::string description,
eSegType seg_type, int data_blocks) [pure virtual]

create a new auxiliary segment A new segment of the desired type is created and assigned the given name
and description. The segment number is returned. The segment is created with the requested number of
data blocks. If this is zero a default size may be assigned for some types with fixed sizes.

This method may fail if there are no unused segment pointers available in the file.

Parameters:

name segment name, at most eight characters.
description segment description, at most 64 characters.
seg_type the segment type.
data_blocks the number of data blocks the segment should be initially assigned. If zero a default value

may be used for some fixed sized segments.

Returns:

the number of the segment created.

Referenced by PCIDSK::Create().

8.6.2.3 int PCIDSK::PCIDSKFile::DeleteSegment (int segment) [pure virtual]

delete an existing segment Delete the indicated segment number. The segment must currently exist. The
internal PCIDSKSegment (p. ??) object associated with this segment will also be destroyed, and any
references to it from GetSegment() (p. ??) or other sources should not be used by the application after this
call is made.

Parameters:

segment the number of the segment to delete from the file.

8.6.2.4 PCIDSKChannel ∗ PCIDSK::PCIDSKFile::GetChannel (int band) [pure virtual]

Fetch channel interface object. The returned channel object remains owned by the PCIDSKFile (p. ??)
and should not be deleted by the caller, and will become invalid after the PCIDSKFile (p. ??) is closed
(deleted).

Parameters:

band the band number to fetch (one based).

Returns:

pointer to internally managed channel object.

8.6.2.5 int PCIDSK::PCIDSKFile::GetChannels () const [pure virtual]

Fetch channel (band) count.

Returns:

the number of channels on this file.

34 Class Documentation

8.6.2.6 uint64 PCIDSK::PCIDSKFile::GetFileSize () const [pure virtual]

Fetch file size.

Returns:

returns the size of the PCIDSK (p. ??) file in bytes, as recorded in the file header.

8.6.2.7 int PCIDSK::PCIDSKFile::GetHeight () const [pure virtual]

Fetch image height.

Returns:

the height of the file in pixels.

8.6.2.8 const char ∗ PCIDSK::PCIDSKFile::GetInterleaving () const [pure virtual]

Fetch file interleaving method.

Returns:

the interleaving name, one of "PIXEL", "BAND" or "FILE". Note that tiled files will be reported as
"FILE" interleaving.

8.6.2.9 std::vector< std::string > PCIDSK::PCIDSKFile::GetMetadataKeys () [pure
virtual]

Fetch metadata keys. Returns a vector of metadata keys that occur on this object. The values associated
with each may be fetched with GetMetadataValue().

Returns:

list of keys

See also:

GetMetadataValue()

8.6.2.10 int PCIDSK::PCIDSKFile::GetPixelGroupSize () const [pure virtual]

fetch number of bytes per pixel Returns the number of bytes for each pixel group. Each pixel group consists
of the values for all the channels in the file in order.

Note:

This method should only be called for GetInterleaving() (p. ??) == "PIXEL" files.

Returns:

the size of a pixel group in bytes.

See also:

ReadAndLockBlock() (p. ??)

8.6 PCIDSK::PCIDSKFile Class Reference 35

8.6.2.11 PCIDSKSegment ∗ PCIDSK::PCIDSKFile::GetSegment (int type, std::string name, int
previous = 0) [pure virtual]

Fetch segment interface object. If available, a segment of the specified type and name is returned. The
search is started after segment "previous" if none-zero.

The returned segment object remains owned by the PCIDSKFile (p. ??) and should not be deleted by the
caller, and will become invalid after the PCIDSKFile (p. ??) is closed (deleted).

Parameters:

type the segment type desired, or SEG_UNKNOWN for any type.

name the segment name or "" for any name.

previous segment after which the search should start or 0 (default) to start from the start.

Returns:

pointer to internally managed segment object or NULL if none correspond to the request.

8.6.2.12 PCIDSKSegment ∗ PCIDSK::PCIDSKFile::GetSegment (int segment) [pure
virtual]

Fetch segment interface object. The returned segment object remains owned by the PCIDSKFile (p. ??)
and should not be deleted by the caller, and will become invalid after the PCIDSKFile (p. ??) is closed
(deleted).

Parameters:

segment the segment number to fetch (one based).

Returns:

pointer to internally managed segment object.

Referenced by PCIDSK::Create().

8.6.2.13 bool PCIDSK::PCIDSKFile::GetUpdatable () const [pure virtual]

Check readonly/update status.

Returns:

true if the file is open for update, or false if it is read-only.

8.6.2.14 int PCIDSK::PCIDSKFile::GetWidth () const [pure virtual]

Fetch image width.

Returns:

the width of the file in pixels.

36 Class Documentation

8.6.2.15 uint8 ∗ PCIDSK::PCIDSKFile::ReadAndLockBlock (int block_index, int win_xoff = -1,
int win_xsize = -1) [pure virtual]

Read a block. Returnst the pointer to an internal buffer for the indicated block. The buffer is owned by the
PCIDSKFile (p. ??) object, but will be considered locked and available for the application code to read
and modify until the UnlockBlock() (p. ??) method is called. The buffer will contain all the pixel values
for the requested block in pixel interleaved form.

The win_xoff, and win_xsize parameters may be used to select a subregion of the scanline block to read.
By default the whole scanline is read.

Note:

This method should only be called for GetInterleaving() (p. ??) == "PIXEL" files. Normal imagery
access should be via the PCIDSKChannel (p. ??) class. This method is provided on the PCIDSKFile
(p. ??) for pixel interleaved files to allow optimized access for this one case.

Parameters:

block_index the zero based block(scanline) to be read.

win_xoff the offset into the scanline to start reading values.

win_xsize the number of pixels to read.

Returns:

pointer to an internal buffer with pixel data in it.

8.6.2.16 void PCIDSK::PCIDSKFile::ReadFromFile (void ∗ buffer, uint64 offset, uint64 size)
[pure virtual]

Read data from file. This method is normally only used by the PCIDSK (p. ??) library itself,
and provides a mechanism to read directly from the PCIDSK (p. ??) file. Applications should nor-
mally use the PCIDSK::PCIDSKChannel::ReadBlock() (p. ??) method for imagery, or appropriate
PCIDSK::PCIDSKSegment (p. ??) methods for reading segment data.

Parameters:

buffer pointer to the buffer into which the data should be read.

offset the byte offset in the file (zero based) at which to read the data.

size the number of bytes from the file to read.

8.6.2.17 void PCIDSK::PCIDSKFile::Synchronize () [pure virtual]

Write pending information to disk. Some write and update operations on PCIDSK (p. ??) files are not
written to disk immediately after write calls. This method will ensure that any pending writes are flushed
through to disk. This includes writing updates to tiled layer indexes, flushing out metadata, and potential
caching of other information such as vector writes.

NOTE: Currently this method does not invalidate read-cached information such as segment pointer lists,
segment headers, or band metadata. At some point in the future it might be extended to do this as well.

8.6 PCIDSK::PCIDSKFile Class Reference 37

8.6.2.18 void PCIDSK::PCIDSKFile::UnlockBlock (bool mark_dirty = false) [pure
virtual]

Unlock block. This method should be called after use of the buffer from ReadAndLockBlock() (p. ??) is
complete. If the buffer was modified and will need to be written to disk the argument "mark_dirty" should
be passed in as true.

Note:

This method should only be called for GetInterleaving() (p. ??) == "PIXEL" files.

Parameters:

mark_dirty true if the block data was modified, else false.

See also:

ReadAndLockBlock() (p. ??)

8.6.2.19 void PCIDSK::PCIDSKFile::WriteToFile (const void ∗ buffer, uint64 offset, uint64 size)
[pure virtual]

Write data to file. This method is normally only used by the PCIDSK (p. ??) library itself, and pro-
vides a mechanism to write directly to the PCIDSK (p. ??) file. Applications should normally use
the PCIDSK::PCIDSKChannel::ReadBlock() (p. ??), and PCIDSK::PCIDSKChannel::WriteBlock()
(p. ??) methods for imagery, or appropriate PCIDSK::PCIDSKSegment (p. ??) methods for updating
segment data.

Parameters:

buffer pointer to the data to write to disk.

offset the byte offset in the file (zero based) at which to write the data.

size the number of bytes from buffer to write.

The documentation for this class was generated from the following files:

• pcidsk_file.h
• pcidskfile.dox

38 Class Documentation

8.7 PCIDSK::PCIDSKGeoref Class Reference

Interface to PCIDSK (p. ??) georeferencing segment.

#include <pcidsk_georef.h>

Public Member Functions

• virtual void GetTransform (double &a1, double &a2, double &xrot, double &b1, double &yrot,
double &b3)=0

Get georeferencing transformation.

• virtual std::string GetGeosys ()=0

Fetch georeferencing string.

• virtual std::vector< double > GetParameters ()=0

Fetch projection parameters.

• virtual void WriteSimple (std::string geosys, double a1, double a2, double xrot, double b1, double
yrot, double b3)=0

Write simple georeferencing information.

• virtual void WriteParameters (std::vector< double > ¶meters)=0

Write complex projection parameters.

8.7.1 Detailed Description

Interface to PCIDSK (p. ??) georeferencing segment.

8.7.2 Member Function Documentation

8.7.2.1 virtual std::string PCIDSK::PCIDSKGeoref::GetGeosys () [pure virtual]

Fetch georeferencing string. Returns the short, 16 character, georeferncing string. This string is sufficient
to document the coordinate system of simple coordinate systems (like "UTM 17 S D000"), while other
coordinate systems are only fully defined with additional projection parameters.

Returns:

the georeferencing string.

8.7.2.2 virtual std::vector<double> PCIDSK::PCIDSKGeoref::GetParameters () [pure
virtual]

Fetch projection parameters. Fetches the list of detailed projection parameters used for projection methods
not fully described by the Geosys string. The projection parameters are as shown below, though in the
future more items might be added to the array. The first 15 are the classic USGS GCTP parameters.

8.7 PCIDSK::PCIDSKGeoref Class Reference 39

• Parm[0]: diameter of earth - major axis (meters).

• Parm[1]: diameter of earth - minor axis (meters).

• Parm[2]: Reference Longitude (degrees)

• Parm[3]: Reference Latitude (degrees)

• Parm[4]: Standard Parallel 1 (degrees)

• Parm[5]: Standard Parallel 2 (degrees)

• Parm[6]: False Easting (meters?)

• Parm[7]: False Northing (meters?)

• Parm[8]: Scale (unitless)

• Parm[9]: Height (meters?)

• Parm[10]: Longitude 1 (degrees)

• Parm[11]: Latitude 1 (degrees)

• Parm[12]: Longitude 2 (degrees)

• Parm[13]: Latitude 2 (degrees)

• Parm[14]: Azimuth (degrees)

• Parm[15]: Landsat Number

• Parm[16]: Landsat Path

• Parm[17]: Unit Code (1=US Foot, 2=Meter, 4=Degree, 5=Intl Foot).

Review the PCIDSK (p. ??) Database Reference Manual to understand which parameters apply to which
projection methods.

Returns:

an array of values, at least 18.

8.7.2.3 virtual void PCIDSK::PCIDSKGeoref::GetTransform (double & a1, double & a2, double
& xrot, double & b1, double & yrot, double & b3) [pure virtual]

Get georeferencing transformation. Returns the affine georeferencing transform coefficients for this image.
Used to map from pixel/line coordinates to georeferenced coordinates using the transformation:

Xgeo = a1 + a2 ∗ Xpix + xrot ∗ Ypix

Ygeo = b1 + yrot ∗ Xpix + b2 ∗ Ypix

where Xpix and Ypix are pixel line locations with (0,0) being the top left corner of the top left pixel,
and (0.5,0.5) being the center of the top left pixel. For an ungeoreferenced image the values will be
(0.0,1.0,0.0,0.0,0.0,1.0).

Parameters:

a1 returns easting of top left corner.

40 Class Documentation

a2 returns easting pixel size.

xrot returns rotational coefficient, normally zero.

b1 returns northing of the top left corner.

yrot returns rotational coefficient, normally zero.

b3 returns northing pixel size, normally negative indicating north-up.

8.7.2.4 virtual void PCIDSK::PCIDSKGeoref::WriteParameters (std::vector< double > &
parameters) [pure virtual]

Write complex projection parameters. See GetParameters() (p. ??) for the description of the parameters
list.

Parameters:

parameters A list of at least 17 projection parameters.

8.7.2.5 virtual void PCIDSK::PCIDSKGeoref::WriteSimple (std::string geosys, double a1,
double a2, double xrot, double b1, double yrot, double b3) [pure virtual]

Write simple georeferencing information. Writes out a georeferencing string and geotransform to the
segment.

Parameters:

geosys 16 character coordinate system, like "UTM 17 S D000".

a1 easting of top left corner.

a2 easting pixel size.

xrot rotational coefficient, normally zero.

b1 northing of the top left corner.

yrot rotational coefficient, normally zero.

b3 northing pixel size, normally negative indicating north-up.

Referenced by PCIDSK::Create().

The documentation for this class was generated from the following file:

• pcidsk_georef.h

8.8 PCIDSK::PCIDSKInterfaces Class Reference 41

8.8 PCIDSK::PCIDSKInterfaces Class Reference

Collection of PCIDSK (p. ??) hookable interfaces.

#include <pcidsk_interfaces.h>

Public Attributes

• const IOInterfaces ∗ io
Pointer to IO Interfaces.

• Mutex ∗(∗ CreateMutex)(void)

Function to create a mutex.

• void(∗ JPEGDecompressBlock)(uint8 ∗src_data, int src_bytes, uint8 ∗dst_data, int dst_bytes, int
xsize, int ysize, eChanType pixel_type)

Function to decompress a jpeg block.

• void(∗ JPEGCompressBlock)(uint8 ∗src_data, int src_bytes, uint8 ∗dst_data, int &dst_bytes, int
xsize, int ysize, eChanType pixel_type, int quality)

Function to compress a jpeg block.

8.8.1 Detailed Description

Collection of PCIDSK (p. ??) hookable interfaces.

8.8.2 Member Data Documentation

8.8.2.1 void(∗ PCIDSKInterfaces::JPEGCompressBlock)(uint8 ∗src_data, int src_bytes, uint8
∗dst_data, int &dst_bytes, int xsize, int ysize, eChanType pixel_type)

Function to compress a jpeg block. This function may be NULL if there is no jpeg interface available.

The default implementation is implemented using libjpeg.

The function encodes the image in src_data (src_bytes long) into dst_data as compressed jpeg data. The
passed in value of dst_bytes is the size of the passed in dst_data array (it should be large enough to hold
any compressed result0 and dst_bytes will be returned with the resulting actual number of bytes used.

Errors should be thrown as exceptions.

8.8.2.2 void(∗ PCIDSKInterfaces::JPEGDecompressBlock)(uint8 ∗src_data, int src_bytes, uint8
∗dst_data, int dst_bytes, int xsize, int ysize, eChanType pixel_type)

Function to decompress a jpeg block. This function may be NULL if there is no jpeg interface available.

The default implementation is implemented using libjpeg.

The function decodes the jpeg compressed image in src_data (src_bytes long) into dst_data (dst_bytes long)
as image data. The result should be exactly dst_bytes long, and will be an image of xsize x ysize of type
pixel_type (currently on CHN_8U is allowed).

42 Class Documentation

Errors should be thrown as exceptions.

The documentation for this class was generated from the following files:

• pcidsk_interfaces.h
• core/pcidskinterfaces.cpp

8.9 PCIDSK::PCIDSKSegment Class Reference 43

8.9 PCIDSK::PCIDSKSegment Class Reference

Public tnterface for the PCIDSK (p. ??) Segment Type.

#include <pcidsk_segment.h>

Public Member Functions

• virtual void WriteToFile (const void ∗buffer, uint64 offset, uint64 size)=0

Write data to segment.

• virtual void ReadFromFile (void ∗buffer, uint64 offset, uint64 size)=0

Read data from segment.

• virtual eSegType GetSegmentType ()=0

Fetch segment type.

• virtual std::string GetName ()=0

Fetch segment name.

• virtual std::string GetDescription ()=0

Fetch segment description.

• virtual int GetSegmentNumber ()=0

Fetch segment number.

• virtual uint64 GetContentSize ()=0

Get size of segment data.

• virtual bool IsAtEOF ()=0

Is segment last in file?

• virtual std::string GetMetadataValue (std::string key)=0

Fetch metadata value.

• virtual void SetMetadataValue (std::string key, std::string value)=0

Set metadata value.

• virtual std::vector< std::string > GetMetadataKeys ()=0

Fetch metadata keys.

• virtual void Synchronize ()=0

Write pending information to disk.

44 Class Documentation

8.9.1 Detailed Description

Public tnterface for the PCIDSK (p. ??) Segment Type. This class interface is used for access to PCIDSK
(p. ??) segments and associated data. The class should never be instantiated by the application. Instead
all instances are owned by the corresponding PCIDSK::PCIDSKFile (p. ??) object and a pointer can be
fetched using PCIDSKFile::GetSegment() (p. ??) or related methods.

Some segments types such as binary (SEG_BIN) provide no custom interfaces and can only be accessed
using the generic PCIDSKSegment (p. ??) methods. Others, such as georeferencing segments (SEG_-
GEO) offer additional segment specific interfaces via multiple inheritance. Use dynamic casts to get access
to the type specific interfaces.

Example:

PCIDSK::PCIDSKSegment *seg = file->GetSegment(1);

if(seg->GetSegmentType() == PCIDSK::SEG_GEO)
{

PCIDSK::PCIDSKGeoref *georef = dynamic_cast<PCIDSK::PCIDSKGeoref*>(seg);

printf("Geosys = %s\n", georef->GetGeosys());
}

8.9.2 Member Function Documentation

8.9.2.1 uint64 PCIDSK::PCIDSKSegment::GetContentSize () [pure virtual]

Get size of segment data. Returns the size of the data portion of this segment (header excluded) in bytes.

Returns:

segment data size in bytes.

8.9.2.2 const char ∗ PCIDSK::PCIDSKSegment::GetDescription () [pure virtual]

Fetch segment description. The returned pointer is to internally managed data of the PCIDSKSegment
(p. ??), and should not be modified, freed, or used after the segment object ceases to exist. The description
is at most 80 characters long.

Returns:

the segment description.

8.9.2.3 std::vector< std::string > PCIDSK::PCIDSKSegment::GetMetadataKeys () [pure
virtual]

Fetch metadata keys. Returns a vector of metadata keys that occur on this object. The values associated
with each may be fetched with GetMetadataValue() (p. ??).

Returns:

list of keys

See also:

GetMetadataValue() (p. ??)

8.9 PCIDSK::PCIDSKSegment Class Reference 45

8.9.2.4 std::string PCIDSK::PCIDSKSegment::GetMetadataValue (std::string key) [pure
virtual]

Fetch metadata value. Note that the returned pointer is to an internal structure and it may become invalid if
another thread modifies the metadata for this object.

Parameters:

key the key to fetch the value for.

Returns:

the value of the indicated metadata item, or NULL if it does not exist on the target object.

See also:

GetMetadataKeys() (p. ??)

8.9.2.5 const char ∗ PCIDSK::PCIDSKSegment::GetName () [pure virtual]

Fetch segment name. The returned pointer is to internally managed data of the PCIDSKSegment (p. ??),
and should not be modified, freed, or used after the segment object ceases to exist. The name is at most
eight characters long.

Returns:

the segment name.

8.9.2.6 int PCIDSK::PCIDSKSegment::GetSegmentNumber () [pure virtual]

Fetch segment number.

Returns:

the segment number (1+).

8.9.2.7 eSegType PCIDSK::PCIDSKSegment::GetSegmentType () [pure virtual]

Fetch segment type.

Returns:

the type of this segment.

8.9.2.8 bool PCIDSK::PCIDSKSegment::IsAtEOF () [pure virtual]

Is segment last in file? Returns true if the segment is the last one in the file, and thus can be grown without
having to move it. Primarily this method is used by the SDK itself.

Returns:

true if segment at EOF or false otherwise.

46 Class Documentation

8.9.2.9 void PCIDSK::PCIDSKSegment::ReadFromFile (void ∗ buffer, uint64 offset, uint64 size)
[pure virtual]

Read data from segment. Read from data area of this segment. Offset zero refers to the start of the data
area of the segment, access to to the segment header is not available via ReadFromFile() (p. ??).

Parameters:

buffer pointer to the buffer into which the data should be read.
offset the byte offset in the file (zero based) at which to read the data.
size the number of bytes from the file to read.

8.9.2.10 void PCIDSK::PCIDSKSegment::SetMetadataValue (std::string key, std::string value)
[pure virtual]

Set metadata value. Assign the metadata value associated with the passed key on this object. The file needs
to be open for update. Note that keys should be well formed tokens (no special characters, spaces, etc).

Parameters:

key the key to fetch the value for.
value the value to assign to the key. An empty string deletes the item.

See also:

GetMetadataValue() (p. ??)

8.9.2.11 void PCIDSK::PCIDSKSegment::Synchronize () [pure virtual]

Write pending information to disk. Some write and update operations on PCIDSK (p. ??) files are not
written to disk immediately after write calls. This method will ensure that any pending writes are flushed
through to disk.

NOTE: Currently this method does not invalidate read-cached information. At some point in the future it
might be extended to do this as well.

8.9.2.12 void PCIDSK::PCIDSKSegment::WriteToFile (const void ∗ buffer, uint64 offset, uint64
size) [pure virtual]

Write data to segment. Write to data area of this segment. Offset zero refers to the start of the data area of
the segment, access to to the segment header is not available via WriteToFile() (p. ??).

Parameters:

buffer pointer to the data to write to disk.
offset the byte offset in the file (zero based) at which to write the data.
size the number of bytes from buffer to write.

The documentation for this class was generated from the following files:

• pcidsk_segment.h
• pcidsksegment.dox

8.10 PCIDSK::PCIDSKVectorSegment Class Reference 47

8.10 PCIDSK::PCIDSKVectorSegment Class Reference

Interface to PCIDSK (p. ??) vector segment.

#include <pcidsk_vectorsegment.h>

Public Member Functions

• virtual std::string GetRst ()=0

Fetch RST.

• virtual int GetFieldCount ()=0

Get field count.

• virtual std::string GetFieldName (int field_index)=0

Get field name.

• virtual std::string GetFieldDescription (int field_index)=0

Get field description.

• virtual ShapeFieldType GetFieldType (int field_index)=0

Get field type.

• virtual std::string GetFieldFormat (int field_index)=0

Get field format.

• virtual ShapeField GetFieldDefault (int field_index)=0

Get field default.

• virtual ShapeIterator begin ()=0

Get iterator to first shape.

• virtual ShapeIterator end ()=0

Get iterator to end of shape lib (a wrapper for NullShapeId).

• virtual ShapeId FindFirst ()=0

Fetch first shapeid in the layer.

• virtual ShapeId FindNext (ShapeId id)=0

Fetch the next shape id after the indicated shape id.

• virtual void GetVertices (ShapeId id, std::vector< ShapeVertex > &list)=0

Fetch the vertices for the indicated shape.

• virtual void GetFields (ShapeId id, std::vector< ShapeField > &list)=0

Fetch the fields for the indicated shape.

48 Class Documentation

8.10.1 Detailed Description

Interface to PCIDSK (p. ??) vector segment. The vector segment contains a set of vector features with a
common set of attribute data (fields). Each feature has a numeric identifier (ShapeId), a set of field values,
and a set of geometric vertices. The layer as a whole has a description of the attribute fields, and an RST
(Representation Style Table).

The geometry and attribute fields of shapes can be fetched with the GetVertices() (p. ??) and GetFields()
(p. ??) methods by giving the ShapeId of the desired feature. The set of shapeid’s can be identified using the
FindFirst() (p. ??), and FindNext() (p. ??) methods or the STL compatible ShapeIterator (p. ??) (begin()
(p. ??) and end() (p. ??) methods).

The PCIDSKSegment (p. ??) interface for the segment can be used to fetch the LAYER_TYPE metadata
describing how the vertices should be interpreted as a geometry. Some layers will also have a RingStart
attribute field which is used in conjunction with the LAYER_TYPE to interprete the geometry. Some vector
segments may have no LAYER_TYPE metadata in which case single vertices are interpreted as points, and
multiple vertices as linestrings.

More details are available in the GDB.HLP description of the GDB vector data model.

Note that there are no mechanisms for fast spatial or attribute searches in a PCIDSK (p. ??) vector
segment. Accessing features randomly (rather than in the order shapeids are returned by FindFirst()
(p. ??)/FindNext() or ShapeIterator (p. ??)) may result in reduced performance, and the use of large
amounts of memory for large vector segments.

8.10.2 Member Function Documentation

8.10.2.1 virtual ShapeIterator PCIDSK::PCIDSKVectorSegment::begin () [pure virtual]

Get iterator to first shape.

Returns:

iterator.

8.10.2.2 virtual ShapeIterator PCIDSK::PCIDSKVectorSegment::end () [pure virtual]

Get iterator to end of shape lib (a wrapper for NullShapeId).

Returns:

iterator.

8.10.2.3 virtual ShapeId PCIDSK::PCIDSKVectorSegment::FindFirst () [pure virtual]

Fetch first shapeid in the layer.

Returns:

first shape’s shapeid.

8.10 PCIDSK::PCIDSKVectorSegment Class Reference 49

8.10.2.4 virtual ShapeId PCIDSK::PCIDSKVectorSegment::FindNext (ShapeId id) [pure
virtual]

Fetch the next shape id after the indicated shape id.

Parameters:

id the previous shapes id.

Returns:

next shape’s shapeid.

8.10.2.5 virtual int PCIDSK::PCIDSKVectorSegment::GetFieldCount () [pure virtual]

Get field count. Note that this includes any system attributes, like RingStart, that would not normally be
shown to the user.

Returns:

the number of attribute fields defined on this layer.

8.10.2.6 virtual ShapeField PCIDSK::PCIDSKVectorSegment::GetFieldDefault (int field_index)
[pure virtual]

Get field default.

Parameters:

field_index index of the field requested from zero to GetFieldCount() (p. ??)-1.

Returns:

the field default value.

8.10.2.7 virtual std::string PCIDSK::PCIDSKVectorSegment::GetFieldDescription (int
field_index) [pure virtual]

Get field description.

Parameters:

field_index index of the field requested from zero to GetFieldCount() (p. ??)-1.

Returns:

the field description, often empty.

50 Class Documentation

8.10.2.8 virtual std::string PCIDSK::PCIDSKVectorSegment::GetFieldFormat (int field_index)
[pure virtual]

Get field format.

Parameters:

field_index index of the field requested from zero to GetFieldCount() (p. ??)-1.

Returns:

the field format as a C style format string suitable for use with printf.

8.10.2.9 virtual std::string PCIDSK::PCIDSKVectorSegment::GetFieldName (int field_index)
[pure virtual]

Get field name.

Parameters:

field_index index of the field requested from zero to GetFieldCount() (p. ??)-1.

Returns:

the field name.

8.10.2.10 virtual void PCIDSK::PCIDSKVectorSegment::GetFields (ShapeId id, std::vector<
ShapeField > & list) [pure virtual]

Fetch the fields for the indicated shape.

Parameters:

id the shape to fetch

list the field list is updated with the field values for this shape.

8.10.2.11 virtual ShapeFieldType PCIDSK::PCIDSKVectorSegment::GetFieldType (int
field_index) [pure virtual]

Get field type.

Parameters:

field_index index of the field requested from zero to GetFieldCount() (p. ??)-1.

Returns:

the field type.

8.10 PCIDSK::PCIDSKVectorSegment Class Reference 51

8.10.2.12 virtual std::string PCIDSK::PCIDSKVectorSegment::GetRst () [pure virtual]

Fetch RST. No attempt is made to parse the RST, it is up to the caller to decode it.

NOTE: There is some header info on RST format that may be needed to do this for older RSTs.

Returns:

RST as a string.

8.10.2.13 virtual void PCIDSK::PCIDSKVectorSegment::GetVertices (ShapeId id, std::vector<
ShapeVertex > & list) [pure virtual]

Fetch the vertices for the indicated shape.

Parameters:

id the shape to fetch

list the list is updated with the vertices for this shape.

The documentation for this class was generated from the following file:

• pcidsk_vectorsegment.h

52 Class Documentation

8.11 PCIDSK::ShapeField Class Reference

Attribute field value.

#include <pcidsk_shape.h>

Public Member Functions

• ShapeField ()
Simple constructor.

• ShapeField (const ShapeField &src)
Copy constructor.

• ShapeField & operator= (const ShapeField &src)
Assignment operator.

• void Clear ()
Clear field value.

• ShapeFieldType GetType () const
Fetch field type.

• void SetValue (int32 val)
Set integer value on field.

• void SetValue (const std::vector< int32 > &val)
Set integer list value on field.

• void SetValue (const std::string &val)
Set string value on field.

• void SetValue (double val)
Set double precision floating point value on field.

• void SetValue (float val)
Set single precision floating point value on field.

• int32 GetValueInteger () const
Fetch value as integer or zero if field not of appropriate type.

• std::vector< int32 > GetValueCountedInt () const
Fetch value as integer list or empty list if field not of appropriate type.

• std::string GetValueString () const
Fetch value as string or "" if field not of appropriate type.

• float GetValueFloat () const
Fetch value as float or 0.0 if field not of appropriate type.

8.11 PCIDSK::ShapeField Class Reference 53

• double GetValueDouble () const
Fetch value as double or 0.0 if field not of appropriate type.

8.11.1 Detailed Description

Attribute field value. This class encapsulates any of the supported vector attribute field types in a convenient
way that avoids memory leaks or ownership confusion. The object has a field type (initially FieldTypeNone
on construction) and a value of the specified type. Note that the appropriate value accessor (ie. GetVal-
ueInteger() (p. ??)) must be used that corresponds to the fields type. No attempt is made to automatically
convert (ie. float to double) if the wrong accessor is used.

The documentation for this class was generated from the following file:

• pcidsk_shape.h

54 Class Documentation

8.12 PCIDSK::ShapeIterator Class Reference

Iterator over shapeids in a vector segment.

#include <pcidsk_vectorsegment.h>

Public Member Functions

• ShapeIterator (PCIDSKVectorSegment ∗seg_in)
• ShapeIterator (PCIDSKVectorSegment ∗seg_in, ShapeId id_in)
• ShapeIterator (const ShapeIterator &mit)
• ShapeIterator & operator++ ()
• ShapeIterator & operator++ (int)
• bool operator== (const ShapeIterator &rhs)
• bool operator!= (const ShapeIterator &rhs)
• ShapeId & operator∗ ()

8.12.1 Detailed Description

Iterator over shapeids in a vector segment.

The documentation for this class was generated from the following file:

• pcidsk_vectorsegment.h

8.13 PCIDSK::ShapeVertex Struct Reference 55

8.13 PCIDSK::ShapeVertex Struct Reference

Structure for an x,y,z point.

#include <pcidsk_shape.h>

Public Attributes

• double x
• double y
• double z

8.13.1 Detailed Description

Structure for an x,y,z point.

The documentation for this struct was generated from the following file:

• pcidsk_shape.h

56 Class Documentation

Chapter 9

File Documentation

9.1 pcidsk.h File Reference

#include "pcidsk_config.h"

#include "pcidsk_types.h"

#include "pcidsk_file.h"

#include "pcidsk_channel.h"

#include "pcidsk_buffer.h"

#include "pcidsk_mutex.h"

#include "pcidsk_exception.h"

#include "pcidsk_interfaces.h"

#include "pcidsk_segment.h"

#include "pcidsk_io.h"

#include "pcidsk_georef.h"

#include "pcidsk_rpc.h"

Namespaces

• namespace PCIDSK

Namespace for all PCIDSK (p. ??) Library classes and functions.

Functions

• PCIDSKFile ∗ PCIDSK::Open (std::string filename, std::string access, const PCIDSKInterfaces
∗interfaces)

• PCIDSKFile ∗ PCIDSK::Create (std::string filename, int pixels, int lines, int channel_count,
eChanType ∗channel_types, std::string options, const PCIDSKInterfaces ∗interfaces)

58 File Documentation

9.1.1 Detailed Description

Public PCIDSK (p. ??) library classes and functions.

