Parallel Virtual File System, Version 2

PVFS2 Development Team
September, 2003

Contents

1

An introduction to PVFS2 3
1.1 Why rewrite? o 3
1.2 What'sdifferent? e 3
1.3 Whenwillthisbe available? 8
The basics of PVFS2 9
2.1 SEervers e 9
2.2 Networks e 10
2.3 Interfaces e e e 10
2.4 Client-server interactionst i e e e e e e e e e e e 10
2.5 Consistency fromthe client pointofview 11
2.6 Filesystemeconsistency e e e 11
PVFS2 terminology 13
3.1 Filesystemcomponents. 13
3.2 PVFS20hjects 14
3.3 Handles e e 14
3.4 Handleranges e e 14
3.5 FilesystemIDs e e 15
PVFS2 internal I/O API terminology 16
4.1 Internall/Ointerfaces e e e e e e 16
4.2 Jobinterface e e e e 16
4.3 Postingandtesting 16
4.4 TestvariationsS e e e e e e 17
45 ContextsS e e e e e e 17
4.6 USerpointers i e e e 17
47 Timeoutsand maxidletime e e 17
PVFS2 User APIs and Semantics 19
5.1 UNIXI/Olnterface e e 19
5.2 MPI-IOInterface e e e e e 21
The code tree 22
6.1 Thetoplevel e 22
B.2 ST C . o e e e e e e e e e 23
6.3 SIC/i 0. . o e e e 24
6.4 Tt eSSt . . . e e e 24
6.5 Statemachinesamsdateconp 25
6.6 Buildsystem e 25
6.7 Out-of-treebuilds e e 25

1 Anintroduction to PVFS2

Since the mid-1990s we have been in the business of parallel /0. Oyrdidtel file system, the Parallel
Virtual File System (PVFS), has been the most successful parallel §ilterayon Linux clusters to date. This
code base has been used both in production mode at large scientific cayrgariters and as a launching
point for many research endeavors.

However, the PVFS (or PVFS1) code base is a terrible mess! For thevagefars we have been pushing
it well beyond the environment for which it was originally designed. Theeaf PVFS1 is no longer
appropriate for the environment in which we now see parallel file systeing deployed.

While we have been keeping PVFS1 relevant, we have also been intenaitirgpplication groups, other
parallel I/O researchers, and implementors of system software suctsaageeassing libraries. As a result
have learned a great deal about how applications use these file systgrinevawe might better leverage
the underlying hardware.

Eventually we reached a point where it was obvious to us that a new desigiin order. The PVFS2
design embodies the principles that we believe are key to a successfis}, rblgh-performance parallel
file system. It is being implemented primarily by a distributed team at Argonne Nati@boratory and

Clemson University. Early collaborations have already begun with OhiorSopguter Center and Ohio
State University, and we look forward to additional participation by inteceatel motivated parties.

In this section we discuss the motivation behind and the key characteristmsr gfarallel file system,
PVES2.

1.1 Why rewrite?

There are lots of reasons why we've chosen to rewrite the code. We lveeed with the old code. We
were tired of trying to work around inherent problems in the design. But mealfelt hamstrung by the
design. It was too socket-centric, too obviously single-threaded, widdpport heterogeneous systems
with different endian-ness, and relied too thoroughly on OS buffenvtbfée system characteristics.

The new code base is much bigger and more flexible. Definitely there’s gugtapity for us to suffer from
second system syndrome here! But we're willing to risk this in order to positigselves to use the new
code base for many years to come.

1.2 What's different?

The new design has a number of important features, including:

e modular networking and storage subsystems,
e powerful request format for structured non-contiguous accesses

o flexible and extensible data distribution modules,

3

e distributed metadata,

e stateless servers and clients (no locking subsystem),
e explicit concurrency support,

e tunable semantics,

¢ flexible mapping from file references to servers,

e tight MPI-10 integration, and

e support for data and metadata redundancy.

1.2.1 Modular networking and storage

One shortcoming of the PVFS1 system is its reliance on the socket netwarnkterface and local file
systems for data and metadata storage.

If we look at most cluster computers today we see a variety of networkitpddagies in place. IP, IB,
Myrinet, and Quadrics are some of the more popular ones at the time of whtibgurely more will appear
and disappeain the near future. As groups attempt to remotely access data at high datacetes the
wide area, approaches such as reliable UDP protocols might become amaimigomponent of a parallel
file system as well. Supporting multiple networking technologies, and supgadnimefficientlyis key.

Likewise many different storage technologies are now available. Whlteystting our feet wet in this
area, but it is clear that some flexibility on this front will pay off in terms of ability to leverage new
technologies as they appear. In the mean time we are certainly going to leviaipase technologies for
metadata storage — that just makes good sense.

In PVFS2 the Buffered Messaging Interface (BMI) and the Troveagi@interface provide APIs to network
and storage technologies respectively.

1.2.2 Structured non-contiguous data access

Scientific applications are complicated entities constructed from numerousdiasud operating on highly
structured data. This data is often stored using high-level 1/O librariesrthatige access to traditional
byte-stream files.

These libraries allow applications to describe complicated access pattetrextitzect subsets of large
datasets. These subsets often do not sit in contiguous regions in theyungdéle; however, they are
often very structured (e.g. a block out of a multidimensional array).

It is imperative that a parallel file system natively support structuredatatess in an efficient manner. In
PVFS2 we perform this with the same types of constructs used in MPI dagagifmving for the description
of structured data regions with strides, common block sizes, and so orcagability can then be leveraged
by higher-level libraries such as the MPI-IO implementation.

4

1.2.3 Flexible data distribution

The tradition of striping data across 1/O servers in round-robin fashasrbken in place for quite some time,
and it seems as good a default as any given no more information abou filens going to be accessed.

However, in many cases va® know more about how a file is going to be accessed. Applications have many

opportunities to give the file system information about access patterngthvarous high-level interfaces.
Armed with this information we can make informed decisions on how to better diritata to match
expected access patterns. More complicated systems could redistribute loetter match patterns that are
seen in practice.

PVFS2 includes a modular system for adding new data distributions to thensgetbusing these for new
files. We're starting with the same old round-robin scheme that everyogeustamed to, but we expect to
see this mechanism used to better access multidimensional datasets. It mightg&ain data redundancy
as well.

1.2.4 Distributed metadata

One of the biggest complaints about PVFS1 is the single metadata serves. areactually two bases on
which this complaint is typically launched. The first is that this is a single poifatilire — we’ll address that

in a bit when we talk about data and metadata redundancy. The secontliisstlaapotential performance
bottleneck.

In PVFS1 the metadata server steps aside for /0 operations, makinglyt advettleneck in practice for
large parallel applications, because they are busy writing data andeading a billion files or some such
thing. However, as systems continue to scale it becomes ever more likelynghatieh single point of
contact might become a bottleneck for even well-behaved applications.

PVFS2 allows for configurations where metadata is distributed to some safli&@tservers (which might
or might not also serve data). This allows for metadata for different fil&e tplaced on different servers,
so that applications accessing different files tend to impact each other less

Distributed metadata is a relatively tricky problem, but we're going to proviaedarly releases anyway.

1.2.5 Stateless servers and clients

Parallel file systems (and more generally distributed file systems) are potentaijylicated systems. As
the number of entities participating in the system grows, so does the oppormigfifires. Anything that
can be done to minimize the impact of such failures should be considered.

NFS, for all its faults, does provide a concrete example of the advanfageoving shared state from the
system. Clients can disappear, and an NFS server just keeps hapyihgdées to the remaining clients.

In stark contrast to this are a number of example distributed file systems intpldae In order to meet
certain design constraints they provide coherent caches on clientsehfda locking subsystems. As a

result a client failure is a significant event requiring a complex sequehegents to recover locks and
ensure that the system is in the appropriate state before operationstianieo

We have decided to build PVFS2 as a stateless system and do not usedquks af the client-server
interaction. This vastly simplifies the process of recovering from failunelsfacilitates the use of off-the-
shelf high-availability solutions for providing server failover. This doesanthe semantics of the file
system, but we believe that the resulting semantics are very approprigia &tlel 1/0.

1.2.6 Explicit support for concurrency

Clearly concurrent processing is key in this type of system. The PVRS2rsand client designs are based
around an explicit state machine system that is tightly coupled with a compamnenohitoring completion
of operations across all devices. Threads are used where ngcesgaovide non-blocking access to all
device types. This combination of threads, state machines, and completiocatiotifiallows us to quickly
identify opportunities to make progress on particular operations and aseriization of independent
operations within the client or server.

This design has a further side-effect of giving us native supporaggnchronous operations on the client
side. Native support for asynchronous operations makes nonbgpogerations under MPI-1O both easy to
implement and advantageous to use.

1.2.7 Tunable semantics

Most distributed file systems in use for cluster systems provide POSIX fpiclese to POSIX) semantics.
These semantics are very strict, arguably more strict than necessarygable parallel I/O system.

NFS does not provide POSIX semantics because it does not guaraattebetht caches are coherent. This
actually results in a system that is often unusable for parallel 1/0, butysussful for home directories and
such.

Storage systems being applied in the Grid environment, such as those beihig esnjunction with some
physics experiments, have still different semantics. These tend to assairfilethare added atomically and
are never subsequently modified.

All these very different approaches have their merits and applicatiansléo have their disadvantages.
PVFS2 will not support POSIX semantics (although one is welcome to build ausystem on top of
PVFS2). However, we do intend to give users a great degree ofifigxib terms of the coherency of
the view of file data and of the file system hierarchy. Users in a tightly coygaeallel machine will opt for
more strict semantics that allow for MPI-10 to be implemented. Other groups imigfor looser semantics
allowing for access across the wide area. The key here is allowing faogsbility of different semantics
to match different needs.

1.2.8 Flexible mapping from file references to servers

Administrators appreciate the ability to reconfigure systems to adapt to changelicy or available re-
sources. In parallel file systems, the mapping from a file reference to @addocon devices can help or
hinder reconfiguration of the file system.

In PVFS2 file data is split intdatafiles Each datafile has its own reference, and clients identify the server
that owns a datafile by checking a table loaded at configuration time. ArsmEaneoe added to the system
by allocating a new range of references to that server and restartingsoli@éh an update table. Likewise,
servers can be removed by first stopping clients, next moving dataffldsedaerver, then restarting with a
new table. It is not difficult to imagine providing this functionality while the systemunning, and we will

be investigating this possibility once basic functionality is stable.

1.2.9 Tight MPI-IO coupling

The UNIX interface is a poor building block for an MPI-10 implementation. ded not provide the rich
API necessary to communicate structured I/O accesses to the underlyisgstiden. It has a lot of internal
state stored as part of the file descriptor. It implies POSIX semantics, batrdit provide them for some
file systems (e.g. NFS, many local file systems when writing large data regions).

Rather than building MPI-10 support for PVFS2 through a UNIX-like ifdee, we have started with some-
thing that exposes more of the capabilities of the file system. This interfasandbmaintain file descriptors
or internal state regarding such things as file positions, and in doing scsallewo better leverage the ca-
pabilities of MPI-10 to perform efficient access.

We've already discussed rich I/O requests. “Opening” a file is anothed gxampleMPl _Fi | e_open()

is a collective operation that gathers information on a file so that MPI psesasay later access it. If we
were to build this on top of a UNIX-like API, we would have each processwmald potentially access
the file callopen() . In PVFS2 we instead resolve the filename into a handle using a single filensyste
operation, then broadcast the resulting handle to the remainder of thespesc Operations that determine
file size, truncate files, and remove files may all be performed in this é5memanner, scaling as well as
the MPI broadcast call.

1.2.10 Data and metadata redundancy

Another common (and valid) complaint regarding PVFSL1 is its lack of sufporedundancy at the server
level. RAID approaches are usable to provide tolerance of disk fajlbtesf a server disappears, all files
with data on that server are inaccessible until the server is recovered.

Traditional high-availability solutions may be applied to both metadata and daersén PVFS2 (they're
actually the same server). This option requires shared storage betvaeemotimachines on which file
system data is stored, so this may be prohibitively expensive for some user

A second option that is being investigated is what we are caliimg redundancy The lazy redundancy

approach is our response to the failure of RAID-like approaches te sl for large parallel I/O systems
when applied across servers. The failure of this approach at thisisgalienarily due to the significant
change in environment (latency and number of devices across whicisddtged). Providing the atomic
read/modify/write capability necessary to implement RAID-like protocols in aidiged file system re-
quires a great deal of performance-hampering infrastructure.

With lazy redundancy we expose the creation of redundant data aghcitesperation. This places the
burden of enforcing consistent access on the user. However, ibp&sts up the opportunity for a number
of optimizations, such as creating redundant data in parallel. Furtheusethis can be applied at a more
coarse grain, more compute-intensive algorithms may be used in place of siamjiie providing higher
reliability than simple parity schemes.

Lazy redundancy is still at the conceptual stage. We're still trying to oéter how to best fit this into the
system as a whole. However, traditional failover solutions may be put ie dei¢he existing system.

1.2.11 And more...

There are so many things that we feel we could have done better in PV&Stlishreally a little embarrass-

ing. Better heterogeneous system support, a better build system, a saltrundture for testing concurrent
access to the file system, an inherently concurrent approach to sergfmngtions on both the client and
server, better management tools, even symlinks; we've tried to addressf moisall the major concerns

that our PVFS1 users have had over the years.

It's a big undertaking for us. Which leads to the obvious next question.

1.3 When will this be available?

Believe it or not, right now. At SC2004 we released PVFS2 1.0. We woelfbolish to claim PVFS2 has
no bugs and will work for everyone 100% of the time, but we feel PVFSR wetty good shape. Early
testing has found a lot of bugs, and we feel PVFS is ready for wider use

Note that we’re committed to supporting PVFS1 for some time after PVFS2 is aeaglat) stable. We feel
like PVFS1 is a good solution for many groups already, and we wouldriia@feeople to use PVFS1 for a
little while longer rather than them have a sour first experience with PVFS2.

We announce updates frequently on the PVFS2 mailing lists. We encousageta subscribe — it's the
best way to keep abreast of PVFS2 developments. All code is being disttibnder the LGPL license to
facilitate use under arbitrarily licensed high-level libraries.

2 The basics of PVFS2

PVFS2 is a parallel file system. This means that it is designed for paralléta@gns sharing data across
many clients in a coordinated manner. To do this with high performance, margrsare used to provide
multiple paths to data. Parallel file systems are a subset of distributed file systbiol are more gen-

erally file systems that provide shared access to distributed data, buitngae'ssarily have this focus on
performance or parallel access.

There are lots of things that PVFS2nist designed for. In some cases it will coincidentally perform well for
some arbitrary task that we weren't targeting. In other cases it will parf@ry poorly. If faced with the
option of making the system better for some other task (e.g. executing offetlsgdtem, shared mmapping
of files, storing mail in mbox format) at the expense of parallel I/0 performawe will always ruthlessly
ignore performance for these other tasks.

PVFS2 uses aintelligent serverarchitecture. By this we mean that servers do more than simply provide
clients with blocks of data from disks, instead talking in higher-level absbras such as files and direc-
tories. An alternative architecture &hared storagewhere storage devices (usually accessed at a block
granularity) are directly addressed by clients. The intelligent servaoaph allows for clever algorithms
that could not be applied were block-level accesses the only mechaliésits dad to interact with the
system because more appropriate remote operations can be provideertiesds building blocks for these
algorithms.

In this section we discuss the components of the system, how clients andsdatgeact with each other,
consistency semantics, and how the file system state is kept consistenttwlthaise of locks. In many
cases we will compare the new system with the original PVFS, for those rehmay already be familiar
with that architecture.

2.1 Servers

In PVFSL1 there were two types of server processagsthat served metadata amets that served data.
For any given PVFS1 file system there was exactly one active mgr senagtadata and potentially many
iods serving data for that file system. Since mgrs and iods are just UNIX mesgsome users found it
convenient to run both a mgr and an iod on the same node to conserveaharesources.

In PVFS2 there is exactly one type of server processpitie?-serverThis is also a UNIX process, so one
could run more than one of these on the same node if desired (although wethdiscuss this here). A

configuration file tells each pvfs2-server what its role will be as part®fpdrallel file system. There are
two possible roles, metadata server and data server, and any giagarizer can fill one or both of these
roles.

PVFS2 servers store data for the parallel file system locally. The d¢umgtementation of this storage
relies on UNIX files to hold file data and a Berkeley DB database to hold thingsrlétadata. The specifics
of this storage are hidden under an API that we call Trove.

2.2 Networks

PVFS2 has the capability to support an arbitrary number of differentorkttypes through an abstraction
known as the Buffered Messaging Interface (BMI). At this time BMI impletagans exist for TCP/IP,
Myricom’s GM, and InfiniBand (both Mellanox VAPI and OpenIB APIs).

2.3 Interfaces

At this time there are exactly two low-level I/O interfaces that clients commonlyaiaecess parallel file
systems. The first of these is the UNIX API as presented by the clienatapgisystem. The second is the
MPI-10 interface.

In PVFS1 we provide access through the operating system by providiogdable module that exports
VFS operations out into user space, where a client-side UNIX prottesssyfsd handles interactions with
servers. A more efficient in-kernel version callqu/fsdwas later provided as well.

PVFS2 uses a similar approach to the original PVFS1 approach forssibceagh the OS. A loadable kernel
module exports functions out to user-space where a UNIX procegsyfsie-clienthandles interactions with
servers. We have returned to this model (from the in-kernel kpvfscethbeécause it is not clear that we
will have ready access to all networking APIs from within the kernel.

The second API is the MPI-10 interface. We leverage the ROMIO MPiri@lementation for PVFS2 MPI-
10 support, just as we did for PVFS1. ROMIO links directly to a low-levelF®2 API for access, so it
avoids moving data through the OS and does not communicate with pvfs2-client.

2.4 Client-server interactions

At start-up clients contact any one of the pvfs2-servers and obtaiigooation information about the file
system. Once this data has been obtained, the client is ready to operat& 82 fl¥s.

The process of initiating access to a file on PVFS2 is similar to the processcihatsdor NFS; the file
name is resolved into an opaque referencédnasdle through a lookup operation. Given a handle to some
file, any client can attempt to then access any region of that file (permidsemk could fail). If a handle
becomes invalid, the server will reply at the time of attempted access that ttike eno longer valid.

Handles are nothing particularly special. We can look up a handle on onegs, pass it to another via an
MPI message, and use it at the new process to reference the sameifilgivél us the ability to make the
MPI _Fi | e_open call happen with a single lookup the the file system and a broadcast.

There’s no state held on the servers about “open” files. Theresveota concept of an open file in PVFS2.
So this lookup is all that happens at open time. This has a number of otrefitbeRor one thing, there’s
no shared state to be lost if a client or server disappears. Also, tinetbing to do when a file is “closed”
either, except perhaps ask the servers to push data to disk. In anrbtPhm this can be done by a single
process as well.

10

Of course if you are accessing PVFS2 through the @f¢n andcl ose still exist and work the way you
would expect, as dodsseek, although obviously PVFS2 servers don't keep up with file positions either
All this information is kept locally by the client.

There are a few disadvantages to this. One that we will undoubtedly beat more than once is that the
UNIX behavior of unlinked open files. Usually with local file systems if the fileswpreviously opened,

then it can still be accessed. Certain programs rely on this behavior fi@ct@peration. In PVFS2 we

don’t know if someone has the file open, so if a file is unlinked, it is gone game. Perhaps we will come
up with a clever way to support this or adapt the NFS approach (renangrfijettho an odd name), but this
is a very low priority.

2.5 Consistency from the client point of view

We've discussed in a number of venues the opportunities that are maldblawahen true POSIX semantics
are given up. Truthfully very few file systems actually support POSX3 &le systems don’t enforce atomic
writes across block boundaries without special flags, and NFS filersgslen’t even come close. Never
the less, many people claim POSIX semantics, and many groups ask for fttematvknowing the costs
associated.

PVFS2 does not provide POSIX semantics.

PVFS2 does provide guarantees of atomicity of writes to nonoverlappgign® even noncontiguous
nonoverlapping regions. This is to say that if your parallel applicatiorsimtoevrite to the same bytes,
then you will get what you expect on subsequent reads.

This is enough to provide all the non-atomic mode semantics for MPI-10. fdmiamode of MPI-10 will
need support at a higher level. This will probably be done with enhanasrteeROMIO rather than forcing
more complicated infrastructure into the file system. There are good reasdaghis at the MPI-10 layer
rather than in the file system, but that is outside the context of this document.

Caching of the directory hierarchy is permitted in PVFS2 for a configurdinlation. This allows for some
optimizations at the cost of windows of time during which the file system view migiit thfferent from
one node than from another. The cache time value may be set to zero tdtdsdidhavior; however, we
believe that users will not find this necessary.

2.6 File system consistency

One of the more complicated issues in building a distributed file system of anjskimaintaining consistent
file system state in the presence of concurrent operations, especidlyhat modify the directory hierarchy.

Traditionally distributed file systems provide a locking infrastructure thatad tsguarantee that clients can
perform certain operations atomically, such as creating or removing file®riunately these locking sys-

tems tend to add additional latency to the system and are efteemelycomplicated due to optimizations

and the need to cleanly handle faults.

11

We have seen no evidence either from the parallel I/O community or the distitishared memory com-
munity that these locking systems will work well at the scales of clusters tharevseeing deployed now,
and we are not in the business of pushing the envelope on locking algogtidnsiplementations, so we're
not using a locking subsystem.

Instead we force all operations that modify the file system hierarchy tetfermed in a manner that results
in an atomic change to the file system view. Clients perform sequences ef(stdfgdserver reques)s
that result in what we tend to think of as atomic operations at the file systein favexample might help
clarify this. Here are the steps necessary to create a new file in PVFS2:

create a directory entry for the new file

create a metadata object for the new file

point the directory entry to the metadata object

create a set of data objects to hold data for the new file

point the metadata at the data objects

Performing those steps in that particular order results in file system stagge widirectory entry exists for
a file that is not really ready to be accessed. If we carefully order theatipns:

1. create the data objects to hold data for the new file
2. create a metadata object for the new file

3. point the metadata at the data objects

4. create a directory entry for the new file pointing to the metadata object

we create a sequence of states that always leave the file system diféetarghy in a consistent state. The
file is either there (and ready to be accessed) or itisn’t. All PVFS2 tipasaare performed in this manner.

This approach brings with it a certain degree of complexity of its own; if thatgss were to fail somewhere
in the middle, or if the directory entry turned out to already exist when weagibte final step, there would
be a great deal of cleanup that must occur. This is a problem that camineunted, however, and because
none of those objects are referenced by anyone else we can cleanpheithhout concern for what other
processes might be up to — they never made it into the directory hierarchy.

12

3 PVFS2 terminology

PVFS2 is based on a somewhat unconventional design in order to abigbvygerformance, scalability, and
modularity. As a result, we have introduced some new concepts and termyiriolagd in describing and
administering the system. This section describes the most important of thesptofitom a high level.

3.1 File system components

We will start by defining the major system components from an administratosexsuperspective. A
PVFS2 file system may consist of the following pieces (some are optionalpvte2-server, system inter-
face, management interface, Linux kernel driver, pvfs2-client,R@WMIO PVFS2 device.

Thepvf s2-server is the server daemon component of the file system. It runs completely inpssaer.s
There may be many instances of pvfs2-server running on many diffarachines. Each instance may
act as either a metadata server, an 1/O server, or both at once. |/@ssstore the actual data associated
with each file, typically striped across multiple servers in round-robin fastMetadata servers store meta
information about files, such as permissions, time stamps, and distributiomgtera. Metadata servers
also store the directory hierarchy.

Initial PVFS2 releases will only support one metadata server per fileraytet this restriction will be
released in the future.

Thesyst em i nt er f ace is the lowest level user space API that provides access to the PVFS&fibers

It is not really intended to be an end user API; application developeisstead encouraged to use MPI-IO
as their first choice, or standard Unix calls for legacy applications. Wedadlment the system interface
here, however, because it is the building block for all other client intedfand is thus referred to quite often.
It is implemented as a single library, called libpvfs2. The system interfacedd®$ not map directly to
POSIX functions. In particular, it is a stateless API that has no condepiem(), close(), or file descriptors.
This API does, however, abstract the task of communicating with manyrsexeecurrently.

Themanagenent i nterf ace is similar in implementation to the system interface. It is a supplemental
API that adds functionality that is normally not exposed to any file systemsusEhis functionality is
intended for use by administrators, and for applications such as fsckrormance monitoring which
require low level file system information.

TheLi nux kernel driver isamodule that can be loaded into an unmodified Linux kernel in order to
provide VFS support for PVFS2. Currently this is only implemented for the&rigs of kernels. This is the
component that allows standard Unix applications (including utilitieslligeandcp) to work on PVFS2.
The kernel driver also requires the use of a user-space helplatmm calledpvf s2- cl i ent .

pvfs2-client is a user-space daemon that handles communication between PVFS3 semdhe
kernel driver. Its primary role is to convert VFS operations igtst em i nt er f ace operations. One
pvfs2-client must be run on each client that wishes to access the filersrsteugh the VFS interface.

The ROM O PVFS2 devi ce is a component of the ROMIO MPI-IO implementation (distributed sep-
arately) that provides MPI-10 support for PVFS2. ROMIO is includgddefault with the MPICH MPI

13

implementation and includes drivers for several file systems. See http://ww\amhgsv/romio/ for de-
tails.

3.2 PVFS2 Objects

PVFS2 has four different object types that are visible to users

e directory
e metafile
e datafile

e symbolic link

3.3 Handles

Handl es are unique, opaque, integer-like identifiers for every object storedRWMFS2 file system. Every
file, directory, and symbolic link has a handle. In addition, several Uyidgrobjects that cannot be directly
manipulated by users are represented with handles. This providesisesoran path dependent mechanism
for specifying what object to operate on when clients and servers coroaten Servers automatically
generate new handles when file system objects are created; the usaeraddagpically manipulate them
directly.

The allowable range of values that handles may assume is known laaridé e space.

3.4 Handle ranges

Handles are essentially very large integers. This means that we cam@nilepartition the handle space
into subsets by simply specifying ranges of handle valudandl e ranges are just that; groups of
handles that are described by the range of values that they may include.

In order to partition the handle space among N servers, we divide théehgpate up into N handle ranges,
and delegate control of each range to a different server. The filersysnfiguration files provide a mech-
anism for mapping handle ranges to particular server hosts. Clients oniganteith handle ranges; the
mapping of ranges to servers is hidden beneath an abstraction layealldhis for greater flexibility and
future features like transparent migration.

14

3.5 File system IDs

Every PVFS2 file system hosted by a particular server has a unique idektibwn as di |l e system

I Dorfs id. The file system ID must be set at file system creation time by administrativesoaleat
they are synchronized across all servers for a given file system.yiSiienss also have symbolic names that
can be resolved into an fs id by servers in order to produce more feastatfiguration files.

File system IDs are also occasionally referred to as collection IDs.

15

4 PVFS2 internal I/O API terminology

PVFS2 contains several low level interfaces for performing variousstyyf I/O. None of these are meant
to be accessed by end users. However, they are pervasive einabhgidesign that it is helpful to describe
some of their common characteristics in a single piece of documentation.

4.1 |Internal I/O interfaces

The following is a list of the lowest level APIs that share characteristidsabawill discuss here.

e BMI (Buffered Message Interface): message based network comatiamis
e Trove: local file and database access

e Flow: high level /O API that ties together lower level components (suchM&dhd Trove) in a
single transfer; handles buffering and datatype processing

e Dev: user level interaction with kernel device driver

e NCAC (Network Centric Adaptive Cache): user level buffer caché waaks on top of Trovegur-
rently unusedl

e Request scheduler: handles concurrency and scheduling at thesfiensrequest level

4.2 Job interface

The Job interface is a single API that binds together all of the above comisoriEhis provides a single
point for testing for completion of any nonblocking operations that hawes seibmitted to a lower level
API. It also handles most of the thread management where applicable.

4.3 Posting and testing

All of the APIs listed in this document are nonblocking. The model used inaaés is to firspost a
desired operation, thenest until the operation has completed, and finally check the resulting error code
to determine if the operation was successful. Eyargt results in the creation of a unique ID that is used
as an input to the est call. This is the mechanism by which particular posts are matched with the torrec
test.

Itis also possible for certain operations to complete immediately at post timefateetiminating the need
to test later if it is not required. This condition is indicated by the return cétleegpost call. A return code
of 0 indicates that the post was successful, but that the caller shoufdrtesimpletion. A return code of 1
indicates that the call was immediately successful, and that no test is néadad. are indicated by either
a negative return code, or else indicated by an output argument thatci§icpo that API.

16

4.4 Test variations

In a parallel file system, it is not uncommon for a client or server to be ic&yut many operations at once.
We can improve efficiency in this case by providing mechanisms for testirapfopletion of more than one

operation in a single function call. Each API will support the following vatsasf the test function (where

PREFIX depends on the API):

e PREFIXtest(): This is the most simple version of the test function. It checks for tagiop of an
individual operation based on the ID given by the caller.

e PREFIXtestsome(): This is an expansion of the above call. The difference is thke# an array of
IDs and a count as input, and provides an array of status values anthbas output. It checks for
completion of any non-zero ID in the array. The output count indicatesrhany of the operations
in question completed, which may range from 0 to the input count.

e PREFIXtestcontext(): This function is similar to testsome(). However, it does notaalaray of
IDs as input. Instead, it tests for completion arfy operations that have previously been posted,
regardless of the ID. A count argument limits how many results may be retiongne caller. A
context (discussed in the following subsection) can be used to limit the sfdfes that may be
accessed through this function.

4.5 Contexts

Before posting any operations to a particular interface, the caller musbfien acont ext for that in-
terface. This is a mechanism by which an interface can differentiate hetimeedifferent callers (ie, if
operations are being posted by more than one thread or more than oneléigheomponent). This con-
text is then used as an input argument to every subsequent post tecaltelh particular, it is very useful
for the testcontext() functions, to insure that it does not return informatiout operations that were posted
by a different caller.

4.6 User pointers

User poi nt ers are void* values that are passed into an interface at post time and ic:torttee caller
at completion time through one of the test functions. These pointers are steved or transmitted over
the network; they are intended for local use by the interface caller. fitagybe used for any purpose. For
example, it may be set to point at a data structure that tracks the state ofsteensywWhen the pointer
is returned at completion time, the caller can then map back to this data structureiatatyedithout
searching because it has a direct pointer.

4.7 Time outs and max idle time

The job interface allows the caller to specify a time out with all test functiongs détermines how long
the test function is allowed to block before returning if no operations ofestdrave completed.

17

The lower level APIs follow different semantics. Rather than a time out, they éhe caller to specify a
max idle tine. The maxidle time governs how long the API is allowed to sleep if it is idle when the
test call is made. It is under no obligation to actually consume the full idle time.ntibi® like a hint to
control whether the function is a busy poll, or if it should sleep when theme igork to do.

18

5 PVFS2 User APIs and Semantics

Because PVFS2 is designed specifically for performance in systems wbecurrent access from many
processes is commonplace, there are some differences between th2 iPtéfaces and traditional file
system interfaces. In this section we will discuss the two interfaces po¥iepplications to use when
accessing PVFS2 file systems. We will start with the traditional UNIX I/O interfavhich nearly all file
systems implement. We will then cover the MPI-10 interface.

5.1 UNIXI/O Interface

We provide an implementation of the UNIX I/O interface for clients running Linessions 2.4 (2.4.19 and
later) and 2.6. This interface implements the traditianaén, r ead, wri t e, andcl ose interface as well
as providing the directory operations necessary for applications such @ work.

It is important to note that there is a difference between implementing the UNIXRIGand implementing
the POSIX semantics for this API. File systems exported via NFS (versiond 3)ado not exhibit many
of the POSIX semantics, and even local file systems may not guarantee atahigitijes that cross disk
block boundaries. We also do not implement the full POSIX semantics. Hemilwdocument aspects of
the POSIX semantics that we do not implement.

5.1.1 Permission Checking

To understand why PVFS2 permission checking behaves differently hhe POSIX standard, it is useful
to discuss how PVFS2 performs permission checking. PVFS2 doesailyt iraplement theopen etc.
interface, but instead uses a stateless approach that relies on the dietkiop a file name to convert it
into ahandlethat can be used for subsequent read and write accesses. This maydbe used for many
read and write accesses and may be cached under certain guidelirs®okhp operation is performed at
file open time.

Permission checking is performed in two places. First, the VFS checks p@nion the client and will
prevent users from performing invalid operations. Second, the rsperéorms rudimentary checks for
specific operations; however, it (currently) relies on the client to peoaimturate user and group information
to be used for this purpose. No recursive directory permission chgdkiperformed by the servers, for
example.

5.1.2 Permissions and File Access

POSIX semantics dictate that once a file has been opened it may continuectebsel by the process until
closed, regardless of changes to permissions.

In PVFS2, the effect of permission changes on a file may or may not be imtelgdagparent to a client
holding an open file descriptor. Because of the manner in which PVF$@mesrpermission checking and

19

file lookup, it is possible that a client may lose the ability to access a file that pirleagusly opened due
to permission change, if for example the cached handle is lost and a loogegasmed again.

5.1.3 Access to Removed Files

POSIX semantics dictate that a file opened by a process may continue todssextantil the subsequent
close, even if the file permissions are changed or the file is deleted. Thisegdhat the file system or
clients somehow keep up with a list of files that are open, which adds yrtabte state to a distributed file
system. In NFS, for example, this is implemented via the “sillyrename” appraaethich clients rename
a deleted but open file to hide it in the directory tree, then delete the renamadhétethe file is finally
closed.

In PVFS2 a file that is deleted is removed immediately regardless of open fiepless. Subsequent
attempts to access the file will find that the file no longer exists.

Neill: Is this completely true, or do clients delay removal in pvfs2-client ifesmme is still accessing?

5.1.4 Overlapping I/O Operations

POSIX semantics dictate sequential consistency for overlapping I/OtapexaThis means that I/O oper-
ations must be atomic with respect to each other — if one process perfogad apanning a collection of
servers while another performs a write in the same region, the read mestragell or none of the changes.
In a parallel file system this involves communication to coordinate access in thisamand because of the
number of clients we wish to support, we are unwilling to implement this functionalttie@st as part of

the core file system).

In PVFS2 we instead implement a semantic wegaficonflicting writesemantic. This semantic states that
all I/0 operations that do not access the same bytes (in other wordgyrazenilicting) will be sequentially
consistent. Write operations that conflict will result in some undefined catibmof the bytes being writ-
ten to storage, while read operations that conflict with write operations wiksme undefined combination
of original data and write data.

5.1.5 Locks

BSD provides thé | ock mechanism for locking file regions as a way to perform atomic modifications to
files. POSIX provides this functionality through optiond tont | . Both of these are advisory locks, which
means that processes not using the locks can access the file regions.

PVFS2 does not implement a locking infrastructure as part of the file systetinis time there is no add-on
advisory locking component either. Thus neither theck function nor thef cnt | advisory locks are
supported by PVFS2.

20

5.2 MPI-IO Interface

We provide an implementation of the MPI-IO interface via an implementation of tidIRGADIO inter-
face. This implementation is included as part of MPICH1 and MPICH2 as wdbleing available as an
independent package. The MPI-IO interface is part of the MPI-Zsta@hand defines an API for file access
from within MPI programs.

Our PVFS2 implementation does not include all the functionality of the MPI-K2ifigation. In this section
we discuss the missing components of MPI-10 for PVFS2.

5.2.1 MPI-IO Atomic Mode

Atomic mode is enabled by callifngPl _Fi | e_set _at omi ci t y and setting the atomicity to true. Atomic
mode guarantees that data written on one process is immediately visible to grottesss (as in the POSIX
default semantics).

ROMIO currently uses file locking to implement the MPI-IO atomic mode functiondligcause we do not
support locks in PVFS2, atomic mode is not currently supported.

5.2.2 MPI-IO Shared Pointer Mode

Shared pointers are used in tlshar ed and_or der ed families of functions.

The ROMIO implementation relies on the use of locking support from the filesyt implement both of
these families of functions, so these are not currently supported. Wesaarching alternative implemen-
tations.

21

6 The code tree

In this section we describe how the code tree is set up for PVFS2 andsliadiitle about how the build
system works.

6.1 The top level
At the top level we see:

e doc

e exanpl es
e i ncl ude
elib

e Mai nt

e SIC

e test

Thedoc directory rather obviously holds documentation, mostly written in LaTeX. @hee a few subdi-
rectories undedoc. Thecodi ng subdirectory has a document describing guidelines for writing code for
the project. Thedesi gn subdirectory has a number of documents describing various comporights o
system and APIs and more importantly currently houses the Quick Start.

Much of the documentation is out of date.
exanpl es currently holds two example server configuration files and that is it.

i ncl ude holds include files that are both used all over the system and are eveinstdied on the system
during amake i nst al | . Any prototypes or defines that are needed by clients using the APldsbein
one of the include files in this directory.

I'i bisempty. It holdd i bpvf s2. a when itis built, prior to installation, if you are building in-tree. More
on out-of-tree builds later.

mai nt holds a collection of scripts. Some of these are used in the build proce#s,ottrers are used
to check for the presence of inappropriately named symbols in the resultragylibr reformat code that
doesn’t conform to the coding standard.

sr ¢ holds the source code to the majority of PVFS2, including the server, clieatyijlinux 2.6.x kernel
module, and management tools. We’ll talk more about this one in a subsemseaiction.

t est holds the source code to many many tests that have been built over time to vilield®&/FS2
implementation. We will discuss this more in a subsequent subsection as well.

22

6.2 src

Thesr ¢ directory contains the majority of the PVFS2 distribution.

Unlike PVFS1, where the PVFS kernel code was in a separate padckagéehie “core,” in PVFS2 both the
servers, client API, and kernel-specific code are packaged tagethe

sr ¢/ conmron holds a number of components shared between clients and servers.clinlem

e dotconf — a configuration file parser

e gen-locks —an implementation of local locks used to provide atomic accesaremisgdiructures in the
presence of threads

¢ id-generator — a simple system for generating unique references (idislatstructures

e llist — a linked-list implementation

e gossip — our logging component

e quicklist — another linked-list implementation

e quickhash — a hash table implementation

e statecomp — the parser for our state machine description language (dibsussequently)

e misc — leftovers, including some state machine code, config file manipulation smde string ma-
nipulation utilities, etc.

src/ apps holds applications associated with PVFS2. Bhe/ apps/ admi n subdirectory holds a col-
lection of tools for setting up, monitoring, and manipulating files on a PVFS2 #iesy.pvf s2- genconfi g

is used to create configuration filepvf s2- cp may be used to move files on and off PVFS2 file sys-
tems. pvf s2- pi ng andpvf s2- st at f s may be used to check on the status of a PVFS2 file system.
pvfs2-1 s is anl s implementation for PVFS2 file systems that does not require that the file system b
mounted.

Thesr c/ apps/ kar na subdirectory contains a gtk-based gui for monitoring a PVFS2 file systeealin
time. Thesrc/ apps/ kernel /I i nux-2. 6 subdirectory contains the user space component of the
PVFS2 kernel driver implementation, which matches the kernel drivex fmahd insr ¢/ ker nel / | i nux- 2. 6.
Thesr c/ apps/ vi s contains experimental code for performance visualization.

src/ cli ent holds code for the “system interface” library, the lowest level libramdusn the client side
for access. Thisisintherc/ client/sysi nt subdirectory. Theini x-i o subdirectory is no longer
used. Note that there is other code used on the client side: the ROMIO pemtpdincluded in MPICH
and MPICH2) and the kernel support code (locateslrie/ ker nel , discussed subsequently).

Note that the ROMIO support for PVFS2 is included in MPICH1, MPICH&] ROMIO distributions and
is not present anywhere in this tree.

23

src/ server holds code for the pvfs2-server. The request scheduler coditis&pits own subdirectory
for no particular reason.

sr ¢/ pr ot o holds code for encoding and decoding our over-the-wire protocoire@ily the “encoding
scheme” used is theontigscheme, stored in its own subdirectory. This encoding scheme really jsshpu
bytes into a contiguous region, so it is only good for homogeneous systesgstems with the same byte
orders where we have correctly padded all the structures (whichot@ply haven't).

src/ ker nel holds implementations of kernel support. Currently there is onlysne/ ker nel /| i nux- 2. 6.

sr ¢/ i o holds enough code that we’'ll just talk about it in its own subsection.

6.3 srcl/io

This directory holds all the code used to move data across the wire, to sibretsieve data from local
resources, to buffer data on servers, and to describe I/O aceesbphysical data distribution.

b holds the Buffered Messaging Interface (BMI) implementations. The tegd-térectory holds code for
mapping to the various underlying implementations and defining common data stauc&ubdirectories
hold implementations for GMb{vi _gm), TCP/IP pmi _t cp), and InfiniBand using either the VAPI or
OpenIB API pmi i b).

buf f er holds the implementation of our internal buffering and caching componetiieAtme of writing
this is not complete and is not enabled.

dev holds code that understands how to move data through a device file thatliyusur Linux 2.6 kernel
module. This is stored in this directory because it is hooked undgolh@omponent.

j ob holds the job component. This component is responsible for providing usaveidmmon mechanism
for queueing and testing for completion of operations on a variety of diftalesources, including all BMI,
Trove, and the device listed above.

descri pti on holds code used to describe 1/0 accesses and physical data distributions

t r ove holds implementations of the Trove storage interface. The top-level diyeotdds code for map-
ping to the various underlying implementations and defining common data stsuctQrerently there is
only a single implementation of Trove, called DBPF (for DB Plus Files). This impftatien builds on
Berkeley DB and local UNIX files for storing local data.

f | ow holds the Flow component implementations. These components are respdoisiigieying data
between different types @hdpoints Valid endpoints include BMI, Trove, memory, and the buffer cache.

6.4 test

This directory holds a great deal of test code, most of which is useld¢lss average user.

24

test/client/sysint has a collection of tests we have used when implementing (or reimplementing)
various system interface functions.

t est/ correct ness/ pt s holds the PVFS Test Suite (PTS), a suite designed for testing the coggctne
of PVFS under various different conditions. There are actually quidevddsts in here, and the vision is that
we will run these in an automated fashion relatively often (but we arerrétheite yet). This is probably
the second most useful code (after pvfs2-client) intthet directory.

6.5 State machines andgt at econp

The PVFS2 source is heavily dependent on a state machine implementationitictided in the tree.
We've already noted that the parser, statecomp, is located Brtbeconmmon/ st at econp subdirectory.
Additional code for processing state machines isiit/ conmon/ i sc.

State machine source is denoted withsansuffix. These are converted t@ files by statecomp. If you are
building out of tree, the c files will end up in the build tree; otherwise you'll be in the confusing situation
of having both versions in the same subdirectory. If modifying these, utdo only modify the. sm
files — the correspondingc file can be overwritten on rebuilds.

6.6 Build system

The build system relies on the “single makefile” concept that was promotedgone or another other
than us (we should have a reference). Overall we're relativelyyheyip it.

We also adopted the Linux 2.6 kernel style of obfuscating the actual compéle lihhis can be irritating
if you're trying to debug the build system. It can be turned off with a “makd’YVwhich makes the build
verbose again. This is controlled via a variable ca@®i ET_COVPI LE in the makefile, if you are looking
for how this is done.

6.7 Out-of-tree builds

Some of the developers are really fond of out-of-tree builds, while otrens’t. Basically the idea is to
perform the build in a separate directory so that the output from the builceps doesn'’t clutter up the
source tree.

This can be done by executiegnf i gur e from a separate directory. For example:
tar xzf pvfs2-0.0.2.t9z
nkdir BU LD pvfs2

cd BUI LD pvfs2
../pvfs2/configure

25

