"""Known matrices related to physics"""
from __future__ import print_function, division
from sympy import Matrix, I
[docs]def msigma(i):
"""Returns a Pauli matrix sigma_i. i=1,2,3
References
==========
.. [1] http://en.wikipedia.org/wiki/Pauli_matrices
Examples
========
>>> from sympy.physics.matrices import msigma
>>> msigma(1)
Matrix([
[0, 1],
[1, 0]])
"""
if i == 1:
mat = ( (
(0, 1),
(1, 0)
) )
elif i == 2:
mat = ( (
(0, -I),
(I, 0)
) )
elif i == 3:
mat = ( (
(1, 0),
(0, -1)
) )
else:
raise IndexError("Invalid Pauli index")
return Matrix(mat)
[docs]def pat_matrix(m, dx, dy, dz):
"""Returns the Parallel Axis Theorem matrix to translate the inertia
matrix a distance of (dx, dy, dz) for a body of mass m.
Examples
--------
If the point we want the inertia about is a distance of 2 units of
length and 1 unit along the x-axis we get:
>>> from sympy.physics.matrices import pat_matrix
>>> pat_matrix(2,1,0,0)
Matrix([
[0, 0, 0],
[0, 2, 0],
[0, 0, 2]])
In case we want to find the inertia along a vector of (1,1,1):
>>> pat_matrix(2,1,1,1)
Matrix([
[ 4, -2, -2],
[-2, 4, -2],
[-2, -2, 4]])
"""
dxdy = -dx*dy
dydz = -dy*dz
dzdx = -dz*dx
dxdx = dx**2
dydy = dy**2
dzdz = dz**2
mat = ((dydy + dzdz, dxdy, dzdx),
(dxdy, dxdx + dzdz, dydz),
(dzdx, dydz, dydy + dxdx))
return m*Matrix(mat)
[docs]def mgamma(mu, lower=False):
"""Returns a Dirac gamma matrix gamma^mu in the standard
(Dirac) representation.
If you want gamma_mu, use gamma(mu, True).
We use a convention:
gamma^5 = I * gamma^0 * gamma^1 * gamma^2 * gamma^3
gamma_5 = I * gamma_0 * gamma_1 * gamma_2 * gamma_3 = - gamma^5
References
==========
.. [1] http://en.wikipedia.org/wiki/Gamma_matrices
Examples
========
>>> from sympy.physics.matrices import mgamma
>>> mgamma(1)
Matrix([
[ 0, 0, 0, 1],
[ 0, 0, 1, 0],
[ 0, -1, 0, 0],
[-1, 0, 0, 0]])
"""
if not mu in [0, 1, 2, 3, 5]:
raise IndexError("Invalid Dirac index")
if mu == 0:
mat = (
(1, 0, 0, 0),
(0, 1, 0, 0),
(0, 0, -1, 0),
(0, 0, 0, -1)
)
elif mu == 1:
mat = (
(0, 0, 0, 1),
(0, 0, 1, 0),
(0, -1, 0, 0),
(-1, 0, 0, 0)
)
elif mu == 2:
mat = (
(0, 0, 0, -I),
(0, 0, I, 0),
(0, I, 0, 0),
(-I, 0, 0, 0)
)
elif mu == 3:
mat = (
(0, 0, 1, 0),
(0, 0, 0, -1),
(-1, 0, 0, 0),
(0, 1, 0, 0)
)
elif mu == 5:
mat = (
(0, 0, 1, 0),
(0, 0, 0, 1),
(1, 0, 0, 0),
(0, 1, 0, 0)
)
m = Matrix(mat)
if lower:
if mu in [1, 2, 3, 5]:
m = -m
return m
#Minkowski tensor using the convention (+,-,-,-) used in the Quantum Field
#Theory
minkowski_tensor = Matrix( (
(1, 0, 0, 0),
(0, -1, 0, 0),
(0, 0, -1, 0),
(0, 0, 0, -1)
))